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1. Abstract  
This paper presents a numerical method for stabilized and stiffened structural system by tension members. In these 
structures, it is generally difficult to control a shape and prestress because of high dependency between them. Our 
proposal model has similar features of these systems, and we find the resisting structural form efficiently for 
compression occurred by prestressing. 
Our analytical approach is to divide a structure into two groups which are instable system and statically 
indeterminate system. We formulated equations of stabilizing process in each group. These shapes of structures 
become a unique shape under the specified prestress. In previous research [1], we analyzed two-dimensional 
models and verified the proposed method. In this paper, we analyzed three-dimensional models and show some 
results which would be available to apply for spatial structures. Next, we present the optimization method for these 
structures. In this method, we define the strain energy as an objective function, and magnitude of prestress as 
design variables. It is difficult to apply linear analysis of stress and displacement in these structural models, 
because it would be instable without prestress. Therefore, we apply the geometrically nonlinear analysis with 
prestress by FEM. We focus a form-finding analysis and optimization for these structures in this paper. 
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3. Introduction 
This paper presents a numerical method for a structural system stiffened by tension members, such as tensegrity 
structures and cable domes. These structures are utilized for a spatial structure with light weight and attractive 
appearance. However, in engineering process, it is generally difficult to control a shape and prestress. Therefore, 
we have to apply the form-finding analysis for an equilibrium shape. Many numerical analysis methods of such 
structures have been proposed and it would be successful methods. On the other hand, similar types of these 
structures have been investigated and constructed. These are called “tension-stabilizing truss”, and “tensegric 
dome” [2]. A different feature from tensegrity is that these systems are utilized for comparatively low stiffness 
structures, or instable structures. These systems are useful to stiffen the single-layered truss shell. We focus a 
form-finding analysis and optimization for these structures in this paper.  
 
4. Isotonic Soap Films Stretched on the Polyhedron 
Isotonic soap film stretched on the polyhedron is a conceptual model of our proposed structural one. J. Plateau, a 
Belgian physicist in the 19th Century, formulated Plateau’s law which describes the structure of bubble soap films 
from his experimental observation (Fig.1). It shows that isotonic soap films are stretched on the polyhedron wire 
frame. It also can be assumed that the equilibrium shape by self-stress exists in the member arrangement which is 
a state of tension members covered with compression members. That is to say, in the case of low stiffness shell, it 
can be stiffened by only tension members. Besides, this structural system is not necessary to be rigid at the 
compression member’s joint, it would become light weight and high stiffness structure with prestressing. 

  
Fig.1 Isotonic soap films stretched on polyhedron formed wire frame (Reprinted from [3]) 
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5. Numerical Analysis 

5.1 Analytical Model 

It is shown the initial shape consist of truss, cable members and pin joints in Fig.2. Variables of p1and p2 are acting 
in the cable members. This model is a simple one of stabilized and stiffened structural system.  
We explain the outline of form-finding analysis. Our approach is to divide a structure into two groups. The first 
(g1) is a group of instable system in which some rigid body displacements modes exist. This group consists of 
compression truss members shown in left side of Fig.4. Compression members could be rotated at the node, and 
bending moment doesn't occur inside of members. The second (g2) is a group of statically indeterminate system in 
which some self-equilibrating stress modes exist. This group consists of tension members shown in right side of 
Fig.4. In order to form these assumed systems, we must modify boundary conditions. To analyze these systems, we 
must set forcible deformations as initial values (p1, p2). And then, we control the shape of the structure by 
displacements toward the stable state. The g2 will be change the shape of the structure with specified deformations 
of members forcibly, and the g1 will be change the shape of the structure as rigid body displacement by acting 
reversed force of the g2’s self-stress. In this way, we can obtain the stabilizing shape at the convergence. At last, 
forcible deformation as the initial values take the place of prestress values. The flow of analysis is shown in Fig.5.  

 
Fig.2 Initial shape and members 

 
Fig.3 elevation (left side) and plan view (right side) 

  
Fig.4 compression group (g1) and tension group (g2) 

We investigate whether the structure has stiffness by the method of geometrically nonlinear analysis with prestress. 
It is assumed that the external force is acting as vertical load. The model could be applied linear analysis by FEM, 
but we have to avoid acting compression force into tension members. It appears that this stiffened system of 
structure would be useful.  
 

5.2 Formulation of form-finding 

The discretized static equilibrium equation of truss structures can be written as 
𝐴𝒏 = 𝒇 (1)

𝐴 ∶  equilibrium matrix, 𝒏 ∶ axial force vector, 𝒇 ∶ external force vector
The deformation–displacement relation can be written as 

Fig.5 Analytical flow of 
form-finding 
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𝐵𝒅 = 𝜟𝒍 (2)
𝐵 ∶  deformation − displacement matrix, 𝒅 ∶ displacement vector, 𝜟𝒍 ∶ deformation vector	

Now, we consider two groups of structural system. Rigid body displacement occurs by acting the External force in 
g1. Under the assumption of rigid body displacement, Eq. (2) becomes 

𝐵𝒅 = 𝟎 (in g1) (3)
𝟎 ∶ null vector

The Moore–Penrose generalized inverse matrix gives the displacement vector 𝒅 as 
𝒅 = [𝐼n − 𝐵+𝐵]𝜶 ≡ 𝐻𝜶 (4)

𝐼n ∶  unit matrix(𝑛, 𝑛), 𝐵+ ∶ Moore − Penrose generalized inverse matrix, 𝜶 ∶ arbitrary column vector	
𝐻 ∶ matrix of rigid body displacement modes

To consider the convergence of the external potential energy, 𝒅 can be written as 
𝒅 = 𝛼𝐻𝒇 (5)

𝛼 ∶ incrementation parameter
The axial force vector 𝒏 in g1 can be written as 

𝒏 = −(𝐵+)
T𝒇 (6)

Obtained 𝒏 in this way become least-square solutions. 
Next, we formulate the displacement of g2. Acting the specified deformation causes the forcible displacement in 
g2. This specified deformation takes the place of prestress at the convergence of stabilizing process.  
Under the assumption of self-equilibrium state, Eq. (1) becomes 

𝐴𝒏 = 𝟎 (in g2) (7)
The Moore–Penrose generalized inverse matrix gives the displacement vector 𝒏 as 

𝒏 = [𝐼m − 𝐵𝐵+]𝜷 ≡ 𝐺𝜷 (8)
𝐼m ∶  unit matrix(𝑚, 𝑚), 𝐵+ ∶ Moore − Penrose generalized inverse matrix, 𝜷 ∶ arbitrary column vector	

𝐺 ∶ matrix of self − equirbrating stress modes
To consider the convergence of the complementary energy,  𝒏 can be written as 

𝒏 = −𝐺𝛥𝒍 (9)
	𝛥𝒍 is known value as specified deformation in g2. And, it is negative value. The external force of g1 can be obtained to 
calculate 𝒏 of Eq. (9) such as Fig. 6. 

 
Fig.6 Relation of force in g1 and g2 

The displacement of g2 can be written as 
𝒅 = 𝛼𝐵+𝛥𝒍 (10)

Obtained 𝒅 become least-square solutions, and we regard 𝒅 as the forcible displacement. To use 𝒅 of Eq. (5), and 
(10), the shape of structure is changing. The convergence condition is in below. 

𝑒1 = 𝒅T𝒇 (in g1)
𝑒2 = (−𝛥𝒍 − 𝒏)T(−𝛥𝒍 − 𝒏) (in g2)

𝑒 = 𝑒1 + 𝑒2 < 𝜀 (11)
−𝜟𝒍 becomes prestress when Eq. (11) is established. Therefore, the structure would be stabilized. 

 
5.3 Geometrically Nonlinear Analysis with Prestress 
In this paper, we show the geometrically nonlinear analysis with prestress by FEM. This analytical model stiffened 
by prestress, and it is important to include the geometric stiffness. This method is described as incremental analysis 
and updated Lagrange method. We apply the Newton-Raphson method as the solution of nonlinear equations. 
In the incremental interval, equilibrium equation can be written as 

𝐾𝛥𝒅 = 𝛥𝒇 (12)
𝐾 ∶  tangent stiffeness matrix, 𝛥𝒅 ∶ incremental displacement vector, 𝛥𝒇 ∶ incremental force vector	

Eq. (12) is expressed as below. 
𝐾 = 𝐾𝐸 + 𝐾𝐺 (13)

𝐾𝐸 ∶  elastic stiffeness matrix, 𝐾𝐺 ∶ geometric stiffness matrix
𝛥𝒇 = 𝒓 = 𝒇 − 𝒒 (14)

𝒓 ∶  residual force vector, 𝒒 ∶ internal force vector
The prestress 𝒏0 is including in 𝐾𝐺 and 𝒒. 𝒏0 can be calculated by using Eq. (6), (8). 
To determine deformation, axial force, and internal force, we use 𝐵 matrix of the structure. 

𝛥𝒍 = 𝐵𝛥𝒅 (15)
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𝑛𝑘 =
𝐸𝑘𝐴𝑘

𝑙𝑘
𝛥𝑙𝑘 (16)

𝒒 = 𝐵T(𝒏0 + 𝒏) (17)
𝐸 ∶  elastic modulus, A ∶ sectional area of member

𝑛𝑘 is the axial force in the process of deformation by external force acting. According to the Newton-Raphson method, 
𝛥𝒅 can be calculated as 

𝛥𝒅 = 𝐾−1𝒓 (18)

To quantify the stiffness of the structure, we define the strain energy 𝑈  as below. Considering the effect of prestress, it 
is expressed by using strain energy including prestress.  

𝑈 = ∑(𝑛0𝑘𝛥𝑙0𝑘 + 𝑛𝑘𝛥𝑙𝑘)
𝑚

𝑘=1
(19)

 
5.4 Result of Form-finding Analysis 
We show the analysis for a fundamental type of structure (Fig.3). This model has 12 compression members and 16 
tension members. These are truss members and cable members. We assume that cable members are symmetrically 
prestressing. Thus, we set a limit to the number of parameters, and we can draw a strain energy surface of various 
shape structures. Two results (A,B) of numerical analysis and physical property for FEM are shown as below.  
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Vertical load 1.0 kN/m2 

Young’s modulus (truss) 2.1×108 kN/m2 

Young’s modulus (cable) 1.4×108 kN/m2 

Section area  (truss) 9.8×10-4 m2 

Section area (cable) 9.5×10-5 m2 

Coefficient for prestress 10 

Fig.7 Analysis result-A (p1=1.80, p2=1.10) Fig.8 Analysis result-B (p1=1.15, p2=1.40) 

Fig.9 Axial force in result-A Fig.10 Axial force in result-B 

Fig.11 Strain energy surface 

No solution

Result-A 

Result-B 

Tab.1 Physical property and analysis condition 

truss members cable members truss members cable members 

Axial force (kN) Axial force (kN)
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Form of analysis result of form-finding in section 5.2 is shown in Fig.7,8.  Changing the variables p1, p2, various 
forms can be obtained. The physical property and analysis condition for geometrically nonlinear analysis with 
prestress are shown in Tab.1. The truss members are assumed the steel pipes of D = 101.6 mm. The cable members 
are assumed the strand cables of D = 14.0 mm. Coefficient for prestress is weight factor of prestress. 𝒏0 of Eq.(17) 
include the coefficient for prestress in formulation.  
Axial force in geometrically nonlinear analysis is shown in Fig.9, 10. It appears that compression members are 
acted negative axial force, and tension members are acted positive axial force. This result means that it is effective 
to appy prestress for this model. If this model have solved by using linear analysis in FEM, tension members would 
be acted negative axial force.  
Strain energy surface in Fig. 11 show that this analysis is difficult to converge for optimization. Two cases of 
problem exist, the first is cable members cannot have almost same value of p1 and p2, it occurs vibration in 
form-finding. The second in FEM is the Coefficient for prestress is comparatively low value, tension members are 
acted negative axial force. Moreover, if the coefficient for prestress increase, compression force also increase in 
truss members. Thus, structural optimization is difficult to solve stably in this strain energy field. 
 
6. Structural Optimization by Genetic Algorithm 
In this paper, we apply Genetic Algorithm (GA) for structural optimization. GA is useful for an optimization 
problem such as finding global optimal solution without the gradient of objective function. In our proposed model, 
it is difficult to define the relationship between variables p1, p2 and strain energy, the gradient of energy cannot be 
obtained. Therefore, we chose GA for this problem. However, if we execute GA in this problem, many of 
individuals are fall in “No solution” region in Fig.11. It would not be efficient to converge. Therefore, we propose 
to change the variable space like Fig.12. This method is useful to avoid the region in which algorithm search. The 
formulation of optimization is shown in below. 

Find p1, p2 
to minimize f (p1, p2) 
subject to pL1 < p1 <  pU1 
 pL2 < p2 <  pU2 

f (p1, p2) : Strain energy in Eq. (19) 
pL1, pU1, pL2, pU2 : Upper and lower constrain 

pL1  = 1.0, pU1 = 1.4, pL2 = 1.375 p1+ 0.025, pU2 = 2.0 
These formulation search the hill in which the Result-A exist in Fig. 11. The parameter of GA is shown in Tab. 2. 
We executed the GA optimization three times. Thus, we show the result of optimization in Fig. 13-15. The 
relationship between strain energy and Iteration number is shown in Fig.13. The relationship between entropy Dp 
and Iteration number is shown in Fig.14. Entropy Dp is the value of assessment for convergence. It appears that 
these GA optimizations are in the state of convergence and finished in all trials.  
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Fig.12 Mapping of variable space 

Fig.13 Strain energy – Iteration number Fig.14 Entropy Dp – Iteration number 
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The form of GA optimization result is shown in Fig. 14. Axial force is shown in Fig. 15. Comparing with strain 
energy surface, the point of variables obtained by optimization is an optimal solution in the set region.  
Although axial force tends to be in the state of result-A in form-finding, the values of axial force are totally low.  
 
7. Conclusion 
This paper presents a numerical method for a structural system stiffened by tension members. The form-finding 
analysis can obtain the form in equilibrium state with prestress. The geometrically nonlinear analysis allows to 
apply the structure with prestress. The strain energy surface show that this model is difficult to converge for 
optimization, but mapping of variable space is useful for the case including the “No solution” region. The 
structural optimization by GA is available to find optimal solution for a high stiffened structure.  
This model is simple and static structure in the view of relation of member connection. This proposed method is 
useful for more complicated model such as instable structure with more tension members. The next step is to 
arrange these stabilized and stiffened structural models from every direction. 
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Fig.14 Form of GA optimization result (p1 = 1.433, p2 = 1.000, f (p1, p2) = 1.038) 

Fig.15 Axial force in GA optimization result  
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