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1. Abstract  
In this paper reliability-based optimization (RBO) under both aleatory and epistemic uncertainties is studied based 
on combined probability and evidence theory. Traditionally the mixed uncertainty analysis is directly nested in 
optimization which is computationally prohibitive. To solve this problem, an effective way is to decompose the 
RBO problem into separate deterministic optimization and mixed uncertainty analysis sub-problems by sequential 
optimization and mixed uncertainty analysis (SOMUA) method, which are solved sequentially and alternately till 
convergence. SOMUA transforms the RBO problem into its quasi-equivalent deterministic formulation based on 
the inverse Most Probable Point (iMPP) of objective and constraint functions in each focal element. As the iMPP 
identification calculation is complex, the computational cost grows rapidly with the increase of focal elements. To 
improve the efficiency of SOMUA, in this paper it is proposed to use Taylor approximation to transform 
deterministic optimization. The efficacy of the proposed method is demonstrated with two test problems. It shows 
that the computational cost can be greatly reduced. However, the optimum may be very close to but not as good as 
that of SOMUA, which needs further research. 
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3. Introduction 
Due the existence of uncertainties in engineering, reliability-based optimization (RBO) is widely studied and 
applied to enhance the system reliability. Generally uncertainties include two categories: the aleatory type arising 
from the inherent system randomness and the epistemic type due to subjective lack of knowledge [1]. In this paper, 
combined probability and evidence theory is used to deal with the mixed uncertainties. Based on probability and 
evidence theory, the RBO problem under mixed uncertainties is formulated as  
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where _ objfP  and  _ confP  are the target failure plausibility of the objective and constraint respectively. The design 

variable vector x  is subject to random uncertainties and its mean value is optimized. The parameter vector p  and 

z  are random and epistemic uncertainty vectors respectively. From this formulation it is clear that at each search 
point the failure plausibility of the objective and constraint must be analysed which needs conduct the expensive 
mixed uncertainty analysis. Thus if the mixed uncertainty analysis is directly nested in the optimization, the 
computational cost would be unaffordable. To alleviate this problem, Yao proposed a sequential optimization and 
mixed uncertainty analysis (SOMUA) method to decompose the RBO problem into separate deterministic 
optimization and mixed uncertainty analysis sub-problems, which are solved sequentially and alternately until 
convergence is achieved [2]. SOMUA firstly decomposes the total reliability target into each focal element of the 
epistemic uncertainties. Then in each focal element the uncertain objective and constraint are transformed into the 
quasi-equivalent deterministic formulations by calculating the inverse Most Probable Point (iMPP) corresponding 
to the target reliability target in this focal element. The iMPP search is based on optimization, which induces extra 
calculation and gets worse when the number of focal elements grows big. To solve this problem, it is proposed to 
use Taylor approximation to transform deterministic optimization. In each cycle, uncertainty analysis is conducted 
at the deterministic optimum to obtain its MPP in each focal element. Then the epistemic uncertainties are assigned 
the values of MPP under the assumption that the worst case will happen with these values. Since the epistemic 
uncertainties are fixed, only random uncertainties are left. Thus the uncertain distributions of the objective and 
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constraint functions are also random, which can be approximated by Taylor series approximation methods. As this 
method has the same structure as SOMUA to conduct the optimization and mixed uncertainty analysis sequentially, 
it is named as Taylor-SOMUA indicating that the deterministic transformation is based on Taylor series. The 
original SOMUA method in is denoted as iMPP-SOMUA emphasizing the iMPP based deterministic 
transformation.  The rest of the paper is structured as follows. First, the preliminaries of RBO and the SOMUA 
method are introduced. Then the proposed method Taylor-SOMUA is developed, followed by two test 
demonstrations. Finally some conclusion remarks are presented. 
 
4. Preliminaries 
4.1. Reliability analysis under mixed uncertainties 
The probability space of a random uncertain vector 1 2[ ]

xNx x xx   is described by a triple ( , ,Pr)X  , where 

X  is the universal set of all possible values of x ,   is a  -algebra over X , and Pr  is a probability measure 
indicating the probability that the elements of   occur. The evidence space of an epistemic uncertain vector 

1 2( )
zNz z yz   is also described by a triple ( , , )C m , where C  contains all the possible distinct value set of z , 

m  is the basic probability assignment (BPA) function which maps C  to [0,1]  satisfying the following axioms: 

1) , ( ) 0A C m A   ; 2) for the empty set  , ( ) 0m   ; 3) for all the A C , ( ) 1m A  . The set A  which 

satisfies ( ) 0m A   is called a focal element.   is the set of all the focal elements [3, 4]. 

For a system response function ( , )g x z  , its input includes both the aleatory uncertain vector x  defined by 

 , , Pr   and the epistemic uncertain vector z described by ( , , )C m  with CN  focal elements. Denote the 

failure region as {( , ) | ( , ) }F g a x z x z . The precise probability of failure is bounded by its lower limit called 

belief (Bel) and its up limit called plausibility (Pl) defined as [2, 5, 6] 
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Bel {( , ) }k Fx z  and Pl {( , ) }k Fx z  are called the sub-belief  and sub-plausibility of the focal element 

(1 )k Cc k N  . The methods to calculate Bel {( , ) }k Fx z  and Pl {( , ) }k Fx z  are referred to [7] and [5].  

 
4.2. The SOMUA method 
Denote the cycle number as 1i  . Directly ignore all the uncertainties (the uncertain variables are assigned with 

fixed values) and run the deterministic optimization. Denote the optimum as ( )*ix  and its objective response as 
( )*if . Analyze the plausibility of the objective failure and the constraint failure at the optimum ( )*ix  under mixed 

uncertainties with the mixed uncertainty analysis method SLO-FORM-UUA [5]. For each focal element 
(1 )k Cc k N  , the sub-plausibility ( )
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( )* ( )* ( )*
_ MPP_obj _ MPP_obj _ MPP_obj[ , , ]i i i

k k kx p z  and ( )* ( )* ( )*
_ MPP_con _ MPP_con _ MPP_con[ , , ]i i i

k k kx p z . Then the total failure plausibility ( )
objPl ( )i F  

and ( )
conPl ( )i F  can be calculated with (3). Calculate the target sub-plausibility 

( 1)

_ objPl ( )
i

k T F


 and 
( 1)

_ conPl ( )
i

k T F


 of the 

objective failure and the constraint failure for each focal element (1 )k Cc k N   by  
( 1) ( ) ( )

_ obj obj objPl ( ) Pl ( ) Pl
i i i

k T kF F


    and 
( 1) ( ) ( )

_ con con conPl ( ) Pl ( ) Pl
i i i

k T kF F


    where ( ) ( )
obj obj _ objPl =Pl ( )i i

fF P   and 
( ) ( )
con con _ conPl =Pl ( )i i

fF P  . Identify the corresponding inverse MPP of ( )*ix , which are denoted as 
( )* ( )* ( )*

_ iMPP_obj _ iMPP_obj _ iMPP_obj[ , , ]i i i
k k kx p z  and ( )* ( )* ( )*

_ iMPP_con _ iMPP_con _ iMPP_con[ , , ]i i i
k k kx p z  for the objective and constraint in k th 

focal element respectively.  Then the deterministic optimization problem for the 1i  th cycle can be formulated as 
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Increase the cycle number 1i i   and conduct the deterministic optimization of the next cycle. Repeat the 
preceding steps until convergence is achieved. For more detailed introduction of SOMUA, please refer to [2]. 
 
5. Taylor-SOMUA 
5.1. The transformation of deterministic objective and constraint 
At the optimum of the i th deterministic optimization, conduct the mixed uncertainty analysis and obtain the MPP 

( )* ( )* ( )*
_ MPP_con _ MPP_con _ MPP_con[ , , ]i i i

k k kx p z . Assign the fixed value ( )*
_ MPP_con

i
kz  to the epistemic uncertainty vector z  under 

assumption that the failure will occur with bigger probability when the epistemic uncertainty vector is at this value. 
Then only random uncertain vectors x  and p  are left. Accordingly the constraint function response 
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k rand kg gx p x p z . Assume the distribution of _k randg  

follows the normal distribution, then its mean and standard deviation can be approximated based on the first order 
Taylor series expansion as follows: 

 

_ _

2 2

_ _2 2
_

1 1

( ) ( , )

( , ) ( , )
( )

X P

i i

k rand k rand

n n
k rand k rand

k rand x p
i ii i

g g

g g
g

x p



  
 



    
        
 

x pμ μ

x p x p   (5) 

According to the target failure plausibility 
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Actually _ ( , )k randg x p  may not be normally distributed, thus it should be verified whether the normal distribution 

assumption is rational and the accuracy of approximation formulation (6) is within acceptable level. Denote 
( ) ( )1
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And use this value instead of the one estimated in (5) for constraint transformation in (6). The transformation of the 
objective function is the same as the aforementioned procedure, and the deterministic objective is formulated as 

 
( 1)

( )*
_ MPP_obj

2 2( )* ( )*
_ MPP_obj _ MPP_obj1 1 2 2

_ obj
1 1

( , , )

min max ( , , ) ( , , )
(Pl ( ))

X P
i

C

i i

i
k

i in n
k kk N

k T x P
i ii i

f

f f f
F

x p
 

  

 

 
 
                    

 

x pμ μ z

x p z x p z



  (8) 

 
5.2. The Taylor-SOMUA algorithm 
To sum up, the detailed procedure of the Taylor-SOMUA algorithm is as follows: 
Step 1: Denote 1i  . Directly ignore all the uncertainties and run the deterministic optimization. 
Step 2: For the i th cycle solve the deterministic optimization problem. Denote the optimum as ( )*i

Xμ  and the 

objective value as ( )*if . 

Step 3: Conduct uncertainty analysis at ( )*i
Xμ with SLO-FORM-UUA method [5]. For each focal element 

(1 )k Cc k N  , calculate the sub-plausibility ( )
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requirement, go to Step 5. Otherwise go to next step.  
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where the symbol k  in the subscript represents the focal element index. Denote 1i i   and go to Step 2. 
Step 5: Check convergence. If the relative change between the optimums of two consecutive cycles is smaller than 
the threshold, end the algorithm. Otherwise go to Step 4. 
 
6. Tests 
6.1. Test 1: a numerical problem 
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The optimization variable x  is subject to normal distribution ( ,1.0)xN  . The uncertain parameter p  follows 

normal distribution (2.0,1.0)N . The BPA of the epistemic uncertainty z  is as follows: 

 1 1 2 2[ 1,0), ( ) 0.5; [0,1], ( ) 0.5c m c c m c       (11) 

The optimization result of Taylor-SOMUA is compared with that of iMPP-SOMUA and the traditional nested 
method, which are presented in Table 1. The convergence history is depicted in Figure 1. All of the three methods 
obtain optimization designs which satisfy reliability requirements. It can be observed that the optimum of 
Taylor-SOMUA is slightly bigger than that of other two methods, but its computational cost is the smallest, which 
proves its efficacy in balancing the computation cost and optimization effect.  
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Figure 1: The optimization convergence history of Test 1 
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Table 1: The optimization results of Test 1 

 
 iMPP-SOMUA Taylor-SOMUA Traditional nested method
x  -2.60076 -2.70490 -2.60073 

conPl( )F  0.00998 0.00956 0.01001 

F  4.93895 5.02799 4.93891 

objPl( )F
 0.09994 0.09856 0.09997 

Cycle number 9 9 1 
Total number of function calls 8262 7985 169724 

Number of function calls used for 
deterministic transformation 

780 268 -- 

 
6.2. Test 2: The Golinski’s  speed reducer design optimization problem 
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  (12) 

The optimization variables except 3x  are random. The mean values are optimized and the standard deviations are 

[21um, 1um, 30um, 30um, 21um, 30um] for 1 2 4 5 6 7[ ]x x x x x x  respectively.  For the four epistemic uncertainties 

1a , 2a , 3a , and 4a , one interval is considered for each uncertainty as follows:  

 1 2 3 4[740.0,750.0], [16.5,17.5], [0.09,0.11], [157,158]a a a a      (13) 

The optimization results of Taylor-SOMUA and iMPP-SOMUA are presented in Table 2. The convergence 
history of Taylor-SOMUA is depicted in Figure 2. The optimum of Taylor-SOMUA is slightly bigger than that of 
iMPP-SOMUA, but its computational cost is much less than iMPP-SOMUA, which proves its efficiency. 
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Figure 2: The optimization convergence history of Test 2 
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Table 2: The optimization results of Test 2 

 
 Deterministic optimum Taylor-SOMUA optimum iMPP-SOMUA optimum

Design variables 
3.5, 0.7, 17, 7.3, 

7.7153, 3.3502, 5.2867
3.50502, 0.7, 7.3, 7.94452, 

3.49492, 5.48559 
3.5050, 0.7, 17, 7.3, 

7.9348, 3.4949, 5.4856

Objective 2994.355 3174.334 3174.108 

Constraints 

Pl{f >F} 0.5 0.1 0.1 
Pl{g5>0} 1 0.01 0.01 
Pl{g6>0} 1 0.01 0.01 
Pl{g8>0} 0.5 0.01 0.01 
Pl{g11>0} 0.5 0 0 

Cycle number -- 6 5 
Total number of function calls -- 875 3290 
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8. Conclusions 
In this paper, the RBO method under mixed uncertainties is studied based on sequential optimization and mixed 
uncertainty analysis method. To alleviate the computational problem of the original SOMUA method which needs 
iMPP to transform the deterministic optimization formulation, it is proposed to use Taylor approximation to 
transform the deterministic objective and constraint in this paper. The efficacy of the proposed method is 
demonstrated with two test problems. It shows that the computational cost can be greatly reduced. However, the 
optimum may be very close to but not as good as that of iMPP-SOMUA, which proves the efficacy of the proposed 
method in balancing the computational efficiency and optimization effect. However, the applicability of this 
method in highly nonlinear optimization problems still needs further studies.  
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