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Abstract  
Procedures for sensitivity analysis of the static responses of a plate or shell structure, i.e., the nodal displacement 
and mean compliance, with respect to the position of an external applied load are developed in this work mainly 
because these responses are highly affected by the application point of the load imposed. Based on the essential 
ideas of the finite element analysis, an external concentrated load is first transformed into the equivalent nodal 
forces such that the influence of its move or shift is represented completely by the value variation of the associated 
nodal forces. As a result, the first-order derivatives of an external load to its location change can be performed 
appropriately by the aid of the shape functions of a plate element. Subsequently, the relevant sensitivities of the 
structural responses are formulated readily with the discrete methodology upon the finite element formulation. 
Finally, a numerical example is provided to demonstrate the validity of the sensitivity formulations presented, and 
the numerical results show the high accuracy of the response sensitivity calculations. 
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1. Introduction 
In the preliminary design stage of an engineering structure, there always exist some uncertainties associated not 
only with the structural design parameters, but also with a part or all of the external loads. That is, the loads 
imposed to the structure may often experience modifications in their values, directions and/or positions during the 
design process in order to testify the resulting design to comply with some strict regulations in various 
circumstances [1]. Over the past several decades, the mechanical analysis and optimization of a plate- or shell-type 
structure with design dependent or independent loadings were undertaken extensively in many aspects. Most 
commonly, the application position of an external load is fixed in [2, 3]. However, it is also noticed that even a 
small move or shift of external load may bring about a significant influence on both the performance of the 
structure and then the structure final design. This fact makes it highly desirable for developing an efficient 
technique capable of estimating variations of the structural performances due to a small motion of an applied load, 
and such a sensitivity analysis can quantitatively afford an explicit and quick solution to the problem.  
As is widely known, the sensitivity analysis is extremely useful in the scope of design optimization processes, 
especially in the gradient-based optimization algorithms, where the design sensitivity can be used as a guide to 
implement the structural modification. In effect, the design sensitivity analysis has become a major computational 
cost in most structural optimization solutions [4]. As a result, a simple and precise formulation for an adequate 
sensitivity calculation has always been an active topic in the fields of the structural optimization design.  
This paper is aimed to extend the previous study by the present author [5] for the related sensitivity analysis of the 
structural responses into the plate/shell flexural situation. In this work, the sensitivity formulations of the structural 
displacement and mean compliance are conducted, respectively, with respect to the position variations of an 
external concentrated load. The sensitivity analysis is still carried out with use of the finite element (FE) analysis 
mainly because the corresponding responses are usually obtained on the same strategy. First, the equivalent nodal 
forces of the external applied load are constructed by the adequate interpolation functions of the plate element. Due 
primarily to this direct transformation, the effect of the external load shift is fully represented by the value variation 
of the equivalent nodal forces. Next, the explicit formulations of the first-order derivatives of the nodal force 
vector to change of the application point of the external 
load are derived fairly with the aid of the essential 
features of the plate element. Later, with the above 
derivations the explicit formulations of the sensitivity 
derivatives of the nodal displacements and the 
compliance are developed immediately to the 
movement of the external load. As the structural 
analysis resorts most regularly to the numerical 
execution with FE methodology, such a derivation of 
the design sensitivity has an advantage of compatibility 
with the numerical estimations of the structural 
responses upon the same discrete model, and most 
importantly, can be applied in conjunction with an 
existing commercial FE analysis package. Finally, the 
sensitivity calculations of the responses will be 
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Figure 1: A rectangular plate element subject, at 
point P(x, y), to a concentrated force F of 
the components Fx, Fy and Fz 
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illustrated and the resultant accuracy be demonstrated with a typical numerical example. 
 
2. Derivative of an External Load 
Consider an isotropic, thin rectangular plate (or shallow shell) element of thickness h subjected to a concentrated 
or point load F at an interior point P(x, y) in the element region. Figure 1 shows a typical rectangular plate element 
with 5 degrees of freedom (DOFs) at each of the corners, and the corresponding nodal forces are shown in the 
parentheses. The element or local coordinate system is chosen such that the x-y plane coincides with the midplane 
of the plate. The external applied force may have three components Fx, Fy and Fz parallel, respectively, to each of 
the coordinate axes. Herein, the classical Kirchhoff hypothesis for thin plates applies for describing the transverse 
deflection. Based on the FE theory, the midplane displacements inside the element can be approximated as explicit 
functions of the element nodal displacements:  
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where u and v are the in-plane displacement components in the x-y coordinate system, respectively, and w is the 
lateral displacement component along the z-axis at any point on the plate element midplane (i.e., z=0). {d}e is a 
vector of 20 entries denoting the generalized element nodal displacements: 

TTTTTe ddddd ]}{}{}{}{[}{ 4321                                                                       (2) 

in which, the superscript T denotes matrix transpose. {di} represents the DOFs at each corner node i (i=1, 2, 3, 4) , 
see Figure 1, 
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where ui, vi and wi are the nodal displacements along each of the local axes at a node. θxi and θyi denote the 
associated rotations about the x- and y-axis, respectively. In the small deflection theory of thin plates, the 
transverse displacement w is uncoupled from the in-plane displacements u and v. Consequently, these 
displacements can be interpolated separately as is already known [6]. The matrix of shape functions of the plate 
element in Eq. (1) is 

 ][][][][][ 4321 NNNNN                                                                          (4a) 
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is the matrix of shape functions to each of the four nodes. The usual shape functions read commonly as [7]: 
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For the in-plane components ui and vi identically, and  
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for the transverse components wi, θxi and θyi, respectively. In the above expressions, 
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For a concentrated force F acting at a point P(x, y) within an element, the equivalent nodal forces acting on the 
same element is defined by the virtual work principle of the external load [6], 


















z

y

x
T

yx
e

F

F

F

Nf ),(][}{                                                                                                (7) 

Upon this simple mathematical transformation, a concentrated or point force F, positioned at P(x, y), is now 
replaced entirely by the equivalent nodal force vector {f }

e of size 20, of which the component values depend only 
upon the coordinates of the application point P. In other words, the outcomes induced by continuous movement of 
the external load F can now be represented completely by those resulting from the magnitude variation of the 
equivalent coupled nodal forces {f }

e. Therefore, the derivative research of the structural responses to the motion of 
the external force F itself turns, from now on, into the derivative analyses with respect to the relevant changes of 
the equivalent nodal force vector {f }

e. Moreover, the derivative of the equivalent nodal force due primarily to 
modification of the acting point of the external load can be performed with ease,  
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3. Derivatives of Nodal Displacements of a Structure 
Suppose a general plate structure is modeled with an adequate FE mesh, the overall equations of the force 
equilibrium in terms of the nodal displacements are represented as follows: 

)}({}{}{][ sFPuK                                                                                                     (9) 

where [K] is the system stiffness matrix, {u} is a vector of the unknown nodal displacements, which is dependent 
on both the magnitude and position of the external loads. On the right hand of the equation, the external loads 
applied on the structure are separated into two parts: {P} is the load invariable during the design process, whereas 
{F(s)} is a vector of the nodal forces which is a function of the application position variable s. Taking partial 
derivatives of Eq. (9) with respect to a location variable s of the external applied load yields:  

s

sF

s

u
K






 )}({}{

][                                                                                    (10) 

here it has been supposed that the plate structure itself is essentially independent of the external applied loads. 
Notably, the procedure for the displacement sensitivity solution ∂{u}/∂s can be carried out by solving Eq. (10) 
caused by ∂{F(s)}/∂s, which is rather similar to the solution of the displacement {u} under the external loads, see 
Eq. (3). In view of this similarity, ∂{F(s)}/∂s is generally considered as a pseudo or fictitious load for each of the 
position variables [5].With the relevant result attained in Eq. (8), by assembly of the related element results, it is 
then a trivial task to computed the first-order sensitivity of the nodal displacement vector of a plate structure,  
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4. Compliance Sensitivity Formulation 
In the past years, the topology optimization problems of a plate structure with consideration of the overall stiffness 
have been investigated exhaustively, where the structure is generally designed to be stiff enough to carry a given 
set of the external loads properly [2, 3, 8]. Usually the mean compliance, i.e., the total work done by the external 
loads under a particular configuration, is posed as the objective function. Thus, it is recognized that the compliance 
is actually a highly load-dependent measurement of the structural stiffness in this capacity. Consequently, the 
sensitivity analysis of the compliance to the external applied force is of particular interest in practical cases since a 
small movement of the external load may remarkably alter the system compliance obtained.  
The mean compliance C of a plate structure is defined as half the scalar product of the applied forces and the 
corresponding displacements at equilibrium, and is given in the FE format:  
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Differentiating the above expression with respect to the location variable s yields 
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Obviously, the compliance sensitivity can be computed as long as the displacements and the derivative of the 
external applied load, or the pseudo load, are obtainable. With this sensitivity result, it is capable to make a primary 
estimate of the structural compliance value after variation of the load position by the linear Taylor series 
expansion,  
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5. Illustrative Example 
In this section, the numerical results of the 
structural responses are solved using the 
FE analyzer ANSYS program. Then, the 
corresponding sensitivities are evaluated 
with the program coded in Matlab 
providing several digits of accuracy to 
verify the reliability and accuracy of the 
sensitivity formulation presented.  
A quarter cylinder shell of the thickness 
h=2 mm is simply supported at its four 
corners while it bears a concentrated 
vertical point force F=3 kN at the 
structural center. Figure 2 displays the 
geometry, dimensions and external load. 
The structural projection onto the x-y 
plane is a square. At the same time, the 
gravity load is also involved in the 
analysis (the gravitational constant g= 9.8 
m/s2). The cylinder is discretized with a 
sufficiently fine mesh of the finite 
elements 18 × 18. Assume the Young’s 
modulus is E=210 GPa, Poisson ratio ν=0.3 and the mass density ρ=2800 kg/m3. First, the displacement values and 
the related sensitivities at the center points of the free edges, Point A and B, are computed to the position move of 
the vertical load in the x- and y-axis, respectively, and indicated in Table 1. 
 
Table 1: Displacements at points A and B and the corresponding sensitivities to the position of the 

external vertical forces applied at the center of the cylinder shell  
 

Displacements Sensitivity to position of the vertical force in the axis 
Point 

component value x y 
u (mm) 0 4.87261E-5 0 
v (mm) -4.67423E-1 7.38329E-7 -1.09879E-2 
w (mm) 5.68054E-1 -1.25806E-6 1.47863E-2 
θx (rad) -1.36695E-2 1.54653E-5 4.77687E-1 
θy (rad) 0 -9.91461E-2 0 

A 

θz (rad) 0 -9.08507E-2 0 
u (mm) -9.19519E-3 1.03708E-3 -1.07670E-6 
v (mm) 0 0 -1.64534E-2 
w (mm) -3.69736E-1 -8.65907E-3 3.24734E-6 

θx (rad) 0 0 -1.15354 

θy (rad) 2.60914E-4 1.22743E-1 -1.70148E-4 

B 

θz (rad) 0 0 -3.95777E-3 

 
First of all, it can be seen that the displacement terms u, θy and θz at Point A and the corresponding sensitivities to 
the y-motion of the concentrated load are all zeroes. So are the terms v, θx and θz at Point B to its x-motion. This is 
true due essentially to the symmetry of the structure. It is therefore understood that these displacements are very 
blunt to the position disturbances of the applied force in the related directions. However, it is found that the 
sensitivity to the companion axial move is not null, and the results are comparatively very notable. Secondly, the 
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Figure 2: A quarter cylinder simply supported at corners is subject 
to a vertical concentrated force F at the center point 
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related sensitivities are much smaller for the major displacement terms v, w and θx at Point A (in gray) to the 
x-motion of the concentrated load than to its y-motion. A similar observation can also be made about the 
sensitivities of the displacement terms u, w and θy at Point B (in gray) to the y-motion of the vertical load than to its 
x-motion. This is just the case as is expected.  
 

Table 2: Displacements at points A and B before and after an imaginary move of the 
external vertical force individually in the x- or y-directions by an element size  

 

Displacements with the external force moved by an element size  
in the positive direction of different axes 

linear estimation solution by FEM 
Point 

component 
x y x y 

u (mm) 3.82829E-4 0 3.47619E-4 0 

v (mm) -4.67417E-1 -5.63189E-1 -4.64374E-1 -5.43768E-1 

w (mm) 5.68044E-1 6.96925E-1 5.62859E-1 6.68839E-1 

θx (rad) -1.36694E-2 -9.50617E-3 -1.36056E-2 -9.30330E-3 

θy (rad) -7.78966E-4 0 -7.72402E-4 0 

A 

θz (rad) -7.13790E-4 0 -7.07776E-4 0 

u (mm) -1.04714E-3 -9.20457E-3 -7.93013E-4 -8.24312E-3 

v (mm) 0 -1.43401E-1 0 -1.41692E-1 

w (mm) -4.37768E-1 -3.69708E-1 -4.41272E-1 -3.49618E-1 

θx (rad) 0 -1.00539E-2 0 -9.91328E-3 

θy (rad) 1.22528E-3 2.59431E-4 1.30799E-3 3.99758E-4 

B 

θz (rad) 0 -3.44943E-5 0 -3.38898E-5 

 
Based on the displacement sensitivities shown in Table 1, it is quite simple to predict the nodal displacement terms 
with a conceived motion of the concentrated force F in x- or y-direction. The new displacements }{d  after a 

position perturbation of the concentrated load by a small step can be estimated in the linear Taylor series  
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Table 2 lists the deflections at Point A and B with the position of the vertical concentrated force disturbed by an 
element size individually along the axes. In contrast, the corresponding solutions with the FE method are given 
simultaneously for comparison. By a close examination, it is found that the displacements estimated linearly on the 
sensitivity analysis are in good agreement with the FE solution for the major displacement terms. 
 

Table 3: Structural mean compliances and the related sensitivities to the position of the 
external vertical load applied at the center of the cylinder shell 

 
First-order sensitivity  
in different directions 

Compliance with the concentrated load moved  
by an element size in the positive direction Compliance 

(J) 
axis value estimation by FEM 

x 4.92985E-2 1.06814 1.07465 
1.06775 

y 1.94058E-1 1.06944 1.10675 
 
The structural mean compliance and the associated first-order sensitivities to the position of the vertical load are 
illustrated in Table 3. It is shown evidently from the sensitivities that the structural compliance will increase if the 
vertical force moves away from the center. Therefore, it can be known explicitly that the center of the cylinder in 
the present example is the most appropriate location for the vertical load under the particular consideration of the 
structural stiffness. Moreover, it is observable from Table 3 that the compliance is much more sensible to the 
y-direction move than to its x-direction move of the vertical load. This is very important for the analysis of the 
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uncertain external forces in practice.  
 
6. Conclusions 
In the preliminary design of a practical structure, the external applied loads may change their application locations 
in order to testify that the structural design is appropriate to support or withstand the loads in various conditions. 
The ability to quickly evaluate the response changes of a structure to the location variation of an external load is of 
great importance to the structural designers/analysts. This paper is really an extension of the previous work by the 
author for 2D plane stress conditions [5]. By means of the discrete method in combination with the features of the 
plate/shell element, the derivative of an external load is first obtained. Then, the sensitivity expressions of the 
structural responses, such as the nodal displacement and mean compliance, are developed readily for a bending 
plate structure. Subsequently, a typical example is presented to validate the sensitivity formulations, and the 
numerical results show that the proposed process can provide the response sensitivities with an excellent accuracy.  
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