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1. Abstract
Bi-directional Evolutionary Structural optimisation (BESO) method is now a well-known and popular method in
topology optimisation. A new interpretation of this method is presented in which the method is viewed as a two-
step procedure. Based on this interpretation, a simple heuristic improvement technique is introduced to improve
BESO results. The proposed improvement technique is tested and verified through numerical examples and its
performance is compared with the averaging sensitivity stabilisation technique proposed in [1]. It is shown that the
proposed improvement is robuster than the averaging sensitivity technique.
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3. Introduction
The Bi-directional Evolutionary Structural optimisation (BESO) method was originally proposed in references
[2, 3, 4] as an extension to the ESO (Evolutionary Structural optimisation) method introduced by Xie and Steven
[5, 6]. In the ESO method, materials are gradually removed from the least efficient parts of the design domain.
BESO has the capability of adding material to efficient parts as well as removing inefficient materials. Using a
finite element discretisation of the design domain, BESO adds and removes materials through adding and removing
elements.

There are two variations of the BESO method. In hard-kill BESO, the inefficient elements are completely
removed from the finite element model while in the soft-kill variation, they are replaced by a considerably weaker
material. Soft kill BESO can also be extended to solve multi-material distribution problems [7]. In all variations of
BESO the elements can only assume the considered material or existence states, and thus the final topology has no
elements with intermediate density (grey elements). Another advantage of the BESO method is its capability to be
easily combined with any available Finite Element package. Despite these advantages, however, BESO is usually
considered as an intuitive method with no solid mathematical background [8].

Usually the BESO method is said to be founded on the simple idea of gradually removing materials from
the inefficient parts and adding them to the efficient parts of the structure. In this paper, we propose a different
interpretation of this method. This interpretation helps us to propose a simple approach to improve this method.

The original BESO method was very sensitive to the selection of its algorithmic parameters and was not always
stable. An improved version of this method was proposed by Huang and Xie [1]. The improving procedure pro-
posed here can be considered as alternatives to the simple stabilising procedure introduced by Huang and Xie in
section 2.4 of reference [1] (hereafter referred to as HX). We will demonstrate the application of these improving
techniques and compare them with each other through some examples.

4. Design variables in BESO
In BESO, for each element we use one design variable. The design variable of element e is denoted by xe which
can typically assume discrete values of 0 or 1. The design variable vector is denoted by x = [x1,x2, . . . ,xn]

T where
n is the number of elements.

Assuming a soft-kill approach, the following linear interpolation scheme can be used to relate the elastic
modulus of element e to its design variable

Ee = E(0)+(E(1)−E(0))xe, e = 1, . . . ,n. (1)

The hard-kill can be obtained if E(0) = 0 is used in the above equation.
The equilibrium equation can be written as K(x)u = f in which u and f are nodal load and displacement vectors

respectively, and K is the global stiffness matrix derived by assembling element stiffness matrices as follows,

K(x) = ∑
e∈E

Kg
e(xe). (2)
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Here Kg
e is the global level stiffness matrix of element e and E represents all the elements which are present in the

design domain and can be defined as E =
{

e ∈ {1, . . . ,n}|Ee > 0
}

.

5. Compliance minimisation problem
Defined as c(u,x) = fT u, mean compliance is the most commonly used objective function in topology optimisation
of structures. The compliance minimisation problem is usually considered with a volume constraint as follows,

Pd : min
x∈{0,1}n

{c(u,x) |K(x)u = f,V ≤ V̄ } , (3)

where V is the total volume and V̄ is the maximum allowable volume of material in the structure.
Sensitivities of the mean compliance w.r.t. design variables take the form

∂c
∂xe

=−uT ∂K
∂xe

u =−uT ∂Kg
e

∂Ee

∂Ee

∂xe
u =−(E(1)−E(0))uT Kg

e

Ee
u =−E(1)−E(0)

Ee
uT

e Keue, e ∈ E , (4)

where ue and Ke respectively denote the displacement vector and local stiffness matrix of element e. In a hard-kill
approach, noting that E(0) = 0 and Ee = E(1), ∀e ∈ E , the above equation will reduce to ∂c

∂xe
=−uT

e Keue, e ∈ E .
In BESO, the efficiency of the elements is measured using a parameter called sensitivity number. Denoting the

sensitivity number of element e by αe, we can write (see e.g. [9])

αe =−
∂c
∂xe

, e ∈ E . (5)

In hard-kill approach Eq.(5) can only be used to calculate sensitivity numbers of non-void elements. A filtering
approach can be used in this case to extrapolate sensitivity numbers of void elements. In [1], Huang and Xie used
a two-level filtering scheme which is also adopted here. In this approach firstly nodal sensitivities are derived by
averaging sensitivities of the elements connecting to each node in the following form

α̃ j =
∑e∈E j veαe

∑e∈E j ve
. (6)

Here, E j represents the set of elements connected to node j and ve denotes the volume of element e. Filtered
element sensitivities are then calculated through the following filtering scheme

α̂e =
∑

N
j=1 we jα̃ j

∑
N
j=1 we j

, we j = max{0,r− re j} (7)

where α̂e is the filtered sensitivity of element e, N is the number of nodes in the design domain, we j is a linear
weighting factor, r is the filtering radius and re j is the distance between the centroid of element e and node j. In
[1], Huang and Xie showed that this filtering scheme is also useful in overcoming numerical instabilities such as
checkerboard formation and mesh dependency [10].

Different algorithms have been proposed for adding and removing elements in BESO. In the examples solved
here, we use the algorithm introduced by [11] and [1]. This algorithm uses two controlling parameters, namely,
evolutionary volume ratio (Rv) and maximum allowable admission ratio (Ra). The first one controls the volume
change and the second one controls the maximum amount of materials which can be added in each iteration. Once
the volume of the design reaches the limit of V̄ , Rv will have no effect and all later iterations will have the same
volume. In such cases, the number of adding and removing elements will be equal in each iteration, and Ra deter-
mines this number.

6. Reinterpretation of BESO procedure
Consider the following unconstrained continuous version of Pd in Eq.(3)

Pc : min
x∈Rn
{c(u,x) |K(x)u = f} (8)

The BESO algorithm firstly finds a descent (or search) direction based on Pc and then this direction is modified to
satisfy the constraints defined in Pd.

In the first step, the BESO algorithm uses the steepest descent vector which is defined as −∇ f for a gen-
eral objective function f [12]. Denoting the descent vector by d = [d1, . . . ,dn]

T and the gradient vector by
g = [g1, . . . ,gn]

T , in any iteration like k we have

d[k] =−∇c(x[k]) =−g[k]. (9)
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The superscripts in square brackets denote the iteration number. It is clear that α
[k]
e = d[k]

e =−g[k]e .
The second step involves modifying the descent vector to satisfy the constraints in Pd. The modified vector

is denoted by d̂ = [d̂1, . . . , d̂n]
T and referred to as the move vector here. Using this notation, in any iteration k,

updating of design variables could be expressed as x[k+1] = x[k]+ d̂[k].
Noting the condition xe ∈ {0,1}, the only possible values for d̂e are −1, 0, and 1 corresponding to removing,

not changing, and adding element e respectively. In each iteration, based on Rv and Ra we can determine two
sensitivity number thresholds for adding and removing elements: αadd and αdel (see e.g. [1]). After finding these
thresholds, the relationship between d̂ and d in iteration k can be expressed as

d̂[k]
e = sgn

(
sgn
(

d[k]
e −α

[k]
del

)
+ sgn

(
d[k]

e −α
[k]
add

))
, e = 1, . . . ,n. (10)

Based on this interpretation, we propose an improvement technique to the first step of the BESO algorithm in
the next section.

7. The proposed improvement technique
We propose a heuristic improvement technique by using nonlinear a Conjugate Gradient method [13] as an alter-
native solver for the first step of BESO. Nonlinear conjugate gradient methods converge faster than the steepest
descent method and demand negligible amount of extra memory and computations which make them suitable for
large-scale problems. In conjugate gradient methods the descent direction is defined as{

d[1] =−g[1]

d[k] =−g[k]+β [k]d[k−1], k > 1
(11)

where β is a scalar. Different formulae are suggested for β . For example the one proposed by Fletcher and Reeves
[13], can be expressed as

β
[k]
FR =

g[k] ·g[k]

g[k−1] ·g[k−1] , k > 1. (12)

To improve BESO, based on Eq.(11), we propose to use the following equation instead of Eq.(9) in each
iteration, {

d[1]
e = α̂

[1]
e

d[k]
e = α̂

[k]
e +β

[k]
FRα̂

[k−1]
e , k > 1

(13)

where

β
[k]
FR =

∑e∈E
(
α̂ [k]
)2

∑e∈E
(
α̂ [k−1]

)2 . (14)

The HX stabilising procedure involves averaging consecutive sensitivity numbers, i.e. setting d[k]
e = α̂

[k]
e +α̂

[k−1]
e

2
for k > 1. Noting that in BESO only the direction of sensitivities vector is important, this stabilisation technique
can also be expressed by replacing β

[k]
FR in Eq.(13) with β

[k]
HX = 1. In the next section we test the proposed improve-

ment technique (Eq. 13) and compare it with the HX technique.

8. Numerical examples
8.1. Example 1
A simply supported beam is considered in the first example. The size of the beam is 180×30 and only half of it is
modelled due to symmetry. Four node bi-linear unit square elements are used to discretise the modelled domain.
Design domain of the problem is depicted in Fig. 1a. The force p has the magnitude of 1. Base material has an
elasticity modulus of E = 1 and a Poisson’s ratio of ν = 0.3. The filtering radius is selected as r f = 4.5. All
units are consistent. A hard-kill approach is adopted with Ra = 4% and Rv = 1%. The problem starts with an
initial full design domain and the target volume fraction is 50%. The solution was terminated after 200 iterations
if convergence was not achieved.

The solutions obtained using no improvement (NO), The proposed improvement in Eqs. (13) and (14) (FR),
and Huang and Xie stabilising procedure of averaging sensitivities (HX) are shown in Fig. 1c. The evolution
histories of objective function values are shown in Fig. 1b. It can be seen that without using the improvements, the
solution procedure is unstable. Both FR and HX stabilised the solution procedure and resulted in a considerable
reduction (12%) in the final value of the objective function. The results obtained via FR and HX improvements are
very similar in this case.
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Figure 1: Design domain (a), optimum topologies obtained (b), and the evolution history of volume and objective
function values (c) for the simply supported beam in example 1.

8.2. Example 2
For the second example a short cantilever beam loaded as shown in Fig. 2a is considered where p = 1. The domain
size is 64×40 which is discretised into four node bi-linear unit square elements. The material is the same as the
previous example. We start from a full design domain. The target volume fraction is 50%. The hard-kill approach
with Ra = 5%, Rv = 1%, and r f = 4 is used. All units are consistent.

The evolution history of the objective function values and the obtained topologies are shown in Fig. 3b and
Fig. 3c respectively. Like the previous example, without using the improvements, the solution procedure is unsta-
ble. Both FR and HX stabilised the solution procedure and resulted in a considerable reduction (8%) in the final
value of c. Again almost identical results are obtained from using FR and HX improvements.
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Figure 2: Design domain (a), optimum topologies obtained (b), and the evolution history of volume and objective
function values (cb) for the short cantilever beam starting from full design domain.

To test the proposed approach in a slightly different situation, the same problem is reconsidered with the
initial design depicted in Fig. 3a. As the initial design satisfies the volume constraint, the volume will not change
during the solution making Rv redundant. The evolution history of the objective function values and the obtained
topologies are shown in Fig. 3a and Fig. 3b respectively. It can be seen that without applying the stabilisation
techniques the BESO algorithm is not stable. Although both improvements lead to better solutions, only the FR
approach was successful in obtaining a stable solution in this case.
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Figure 3: The initial design and the evolution history of objective function values (a), and optimum topologies
obtained (b) for the short cantilever beam.

8.3. Example 3
In the third example, performance of the improvement techniques are compared in a two-material distribution
problem in absence of filtering. In two material problems, if filtering technique is used, the Ee in the denominator
of sensitivities in Eq.(4) will give more weight to sensitivity numbers of weaker elements. This will result in
unclear topologies [9, 14]. This problem can be solved by using a nonlinear interpolation scheme instead of Eq.(1)
(see e.g. [7, 15]), giving different weights to sensitivity numbers of different material phases [16, 17], modifying
the filtering scheme [14], or simply by avoiding the filtering scheme (see e.g. [18]). The last approach is used
here. Note that in a soft-kill BESO, filtering is not necessary for extrapolating sensitivity numbers. To control
checkerboard formation, 9-node elements are used in this example which are known to improve the behaviour of
topology optimisation methods with respect to checkerboard formation [10].

The short cantilever beam in example 2 is solved again by a soft-kill approach and with two materials with
elastic moduli of E(1) = 1 and E(0) = 0.2 each filling 50% of the design domain. Ra = 1% is adopted in this
example. Fig. 4 shows the obtained results for this example. Even without using any improvement the BESO
procedure is stable in this case. However, it can be seen that in the absence of a filtering scheme, the HX approach
didn’t improve the solution and in fact resulted in a worse design where materials are scattered in the design
domain. The evolution graph of objective function values reveals that the HX solution is unstable (Fig. 4a). The
FR approach, on the other hand, worked well in this case as well and resulted in a slightly improved (0.4%) design
compared to the case where no improvement approach was used.

9. Conclusion
The BESO method is studied and a new interpretation of this method is proposed. Two separate steps are identified
in the BESO algorithm in each iteration. The first step involves finding a descent vector for the unconstrained
optimisation problem. The second one involves adjusting the move direction to satisfy the constraints of the actual
constrained optimisation problem. The current BESO algorithm uses the steepest descent method in its first step
and a rounding off technique in its second step to find a feasible move vector.

A heuristic improvement technique is proposed which involves using a conjugate gradient method instead of
the steepest descent method in the first step of BESO. The difference of the required computational time and effort
for applying this approach is negligible in topology optimisation problems.

Through numerical examples, the usefulness of this approach is verified and its results are compared with the
stabilisation procedure suggested by Huang and Xie [1]. It is shown that the proposed approach can improve
and stabilise BESO solutions in both hard-kill and soft-kill variations. It is also shown that unlike the stabilisation
procedure suggested by Huang and Xie, the proposed approach doesn’t necessarily require using a filtering scheme.
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Figure 4: The initial design and the evolution history of objective function values (a), and optimum topologies
obtained (b) for the third example.
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