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Figure 1. (a) Half of the cross-section mesh,  (b) Bend and its co-ordinate system,  (c) Streamwise mesh. 
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Abstract 
The flow and thermal field in a square-sectioned 180o U-bend 
were investigated using five turbulence models, namely Suga's 
quadratic and cubic low-Re k-ε, V2F k-ε, RSM-EVH and RSM-
GGDH. All models managed to mimic the general flow and 
thermal patterns. The V2F-version used in this study, however, 
over-predicted the pressure-induced secondary flow and seems to 
need modifications and/or re-tuning of the coefficients to reduce 
its redistribution of turbulence energy. Suga's two k-ε variants are 
less CPU-demanding and perform relatively well and, hence are 
interesting candidates for industrial applications. The RSM 
models performed best. 
 
Introduction 
The turbulent flow and heat transfer in square-sectioned 180o U-
bends give rise to complex three-dimensional motion and heat 
transfer phenomena which are similar to the phenomena that 
occur frequently in many engineering applications such as 
cooling passages in gas turbine blades and automobile engines. 
The study of generic cases like the U-bend is hence important for 
the understanding of the flow and heat transfer mechanisms in 
the industrial applications mentioned above. In the present study 
the published experimental data [8] were used for the validation 
of the results for a square-sectioned U-bend. Besides the interest 
in studying the complex flow and heat transfer phenomena, the 
other objective for this work is to explore the performance of the 
methods for accurate prediction of flow-heat transfer behaviour 
in such generic cases for final use in engineering applications. 
 
 
 

Problem Description 
The geometry is a square-sectioned 180o U-bend duct with the 
side length D=88.9 mm. The bend mid-line radius, r, was 3.35D 
as illustrated in figure 1. The Reynolds number was 
ReD=UmD/ν=56000 where Um=9.11 m/s is the mean velocity. 
The Dean number was De=ReD

.(D/2r)0.5=21634 (where ν is the 
kinematic viscosity). The bend was provided with a long straight 
inlet part and a 4.5D straight outlet part as shown in figure 1b. As 
specified in table 1 the inlet length was tuned for each turbulence 
model to match the flow conditions at -2.2D (upstream the bend) 
to the ones measured by Johnson and Launder [8]. As shown in 
figure 1(a), the cross-section grid consisting of 51x51 grid points 
expanded from a fine near-wall grid to a coarser off-wall grid. 
The mean Y+

 was nearly 7 (Y+=Yuτ  

/ν  where uτ=(τw /ρ)0.5 is the 
friction velocity, ρ is the density and τw= (ρν∂U /∂y)at y=0 is the 
wall shear stress). Hence, the grid was compromised to be used 
for both high- and low-Re models. The grid details appear in 
table 1. As inlet boundary condition constant temperature, 20oC, 
and uniform velocity profile was used. Constant heat flux was 
used on walls. 
 

Turbulence 
Model 

Grid points 
(Streamwise) 

inlet+bend+outlet 

Inlet 
length 

mean 
Y+ 

Y+  
range 

Suga, Quad 179+91+41 20D 6.8 0-11 
Suga, Cubic 179+91+41 20D 6.8 0-11 
V2F 241+91+41 28D 6.1 0-11 
RSM, EVH 286+91+41 32D 7.5 0-14 
RSM, GGDH 286+91+41 32D 7.6 0-14 

Table 1. Grid specifications. 



 

Turbulence Models 
The turbulence models used in this work are Suga's quadratic and 
cubic low-Re k-ε [1-2], V2F k-ε [4,7] and two versions of RSM 
[9], Reynolds stress model, namely isotropic EVH [10] and 
anisotropic GGDH [3] (i.e. Eddy Viscosity Hypothesis and 
Generalised Gradient Diffusion Hypothesis, respectively). The 
models are briefly explained below. To obtain non-linear eddy 
viscosity models, like Suga's quadratic and cubic model, and 
thereby account for the non-isotropic nature of the turbulence, 
series expansions of functional terms are added to the linear eddy 
viscosity model (Boussinesq assumption). The general expression 
for the Reynolds stresses, jiuuρ−  , is given below. 
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Note that Xi =X,Y,Z and xi =x,y,z are the streamwise and Cartesian 
co-ordinates, Ui and ui are the time averaged and fluctuating 
velocity, respectively, in xi-direction and τ= k/ε is the turbulent 
dissipation time scale. The first line in eq. (1) contains only the 
linear version. By adding the second and the third line containing 
the quadratic and cubic products of strain and vorticity rate, Sij 
and Wij , the quadratic and cubic model, respectively, is obtained. 
The coefficients C1-C5  and Cµ, the turbulent viscosity, µt , and the 
damping function , fµ , (in Suga's model) are given below. 
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C1= -0.1,   C2=0.1,   C3=0.26,   C4=10.0 . 2Cµ    and   C5=5.0 . 2Cµ  . 
In the k-ε models two transport equations, one for the turbulent 
kinetic energy, k, and another one for its dissipation rate, ε, are 
solved. These are expressed in a condensed general form below. 
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In Suga's model, as can be seen above the k-equation has its 
conventional form while in the ε-equation two terms, E and Yc , 
expressed below, are added and ε is replaced by ε~ , as defined 
below, which is the isotropic part of ε and is zero at the wall. The 
model coefficients appear in table 3. 
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In the V2F model [4,7] an additional transport equation for the 
wall-normal turbulence intensity, 2v , and an elliptic equation for 
the redistribution term, f , in the 2v -equation, have to be solved. 
The time scale, Ts , length scale, L, and, µt , are also give below. 
No wall function or damping function is used in the V2F model. 
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Reynolds Stress Models, RSM, solve directly the transport 
equations for the Reynolds stresses, jiuuρ−   , as expressed below. 
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For the diffusion term, Dij , two alternative models, the isotropic 
EVH [10] and the anisotropic GGDH [3] are used. k and ε are 
obtained from eqs. (6-7). However, the diffusion terms in eqs. (6-
7), here denoted Dk and Dε , respectively, are modified as given 
below in table 2 together with Dij  for EVH and GGDH. 
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Table 2. Diffusion terms in RSM, k and ε equations. 
For the pressure-strain term, Φij , the SSG model [11] is used. 
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C1=3.4, C1
*=1.8, C2=4.2, C3=0.8, C3

*=1.3, C4=1.25 and C5=0.4. 
With the RSM models the logarithmic wall function given below 
is used for the wall-adjacent cells with Ewf =9.0 and κ =0.42 . 

 u+ = (1/κ) ln(Ewf Y+) ,  u+ = U1/uτ   (21) 
For the thermal field the simple eddy diffusivity model, SED, 
was used in all cases. The turbulent heat fluxes are expressed as 

jh

t
j x

hhu
∂
∂−=

σ
µρ  , σh =turbulent Prandtl number = 0.9   (22) 

Model Cµ σk σε Cε1 Cε2 
Suga 0.09 1.0 1.22 1.44 1.92 
V2F 0.22 1.0 1.30 1.40 1.90 
RSM 0.09 1.0 1.30 1.44 1.83 

Table 3. Model coefficients. 
 

Numerical approach 
The governing equations were solved using the implicit finite 
volume non-staggered solver STAR-CD [12]. The SIMPLE 
algorithm was used for the pressure-velocity coupling. Based on 
earlier work by Etemad et al. [5-6], the MARS scheme (2nd 
order) was chosen for velocities and Upwind (1st order) for other 
quantities. Constant physical properties were assumed. 

 

Results 
The results obtained for all models are condensed in two figures. 
Figure 2 compares the computed profiles of the streamwise 
velocity, U, and temperature, T, with the existing measured data 
on the symmetry plane for several cross-sections. Note that the 
predicted profiles for -2.2D (upstream the bend), 2.2D and 5D are 
compared with the experimental data at -5D, 5D, and 10D, 



 

respectively. The diagrams give a quantitative overview of the 
results. For the understanding of the predicted physical features, 
however, it is appropriate to review the plots, presented in figure 
3 where the vector plots show the pattern of the complex 
secondary flow in the duct cross-sections together with the mean 
velocity magnitude contours and isotherms. The first glance at 
figure 2 shows that at -2.2D the velocity profiles are fairly close 
to the experimental data. This indicates that appropriate inlet 
length is used for each case. The V2F results, however, differ 
somewhat from the other models. As it was shown in earlier 
studies [5-6] the upstream velocity distribution is of great 
significance for the development of the secondary motion in the 
bend. Near each side-wall the centrifugal forces, pointing 
outwards from the bend centre, decrease (due to the friction) and 
hence, the pressure gradient, which  in other regions is in balance 
with the centrifugal forces, prevails and causes a flow motion 
near each side-wall towards the bend centre. This initiates the 
streamwise secondary vortex with a number of smaller satellite-
vortices. The velocity distribution upstream the bend dictates the 
intensity of these vortices which in turn impact the flow and heat 
transfer in the bend. The V2F prediction of the velocity field 
upstream the bend deviates most from the other numerical and 
also experimental data. Hence it is natural to expect that its 
secondary flow further downstream also deviates most. A closer 
look at the plots for V2F, especially at 130o in figure 3 implies 
that this model behaves as the least diffusive among the ones 
used here. Another general observation is that all models, except 
V2F, deliver quite similar and reasonable results. It is likely that 
the V2F version used here needs a re-tuning of coefficients for 
this kind of flow, because it seems to over-predict the strength 

and complexity of the secondary flow and might go too far in 
redistributing the turbulence energy from the streamwise to wall-
normal component. The RSM models mimicked the experimental 
data best, especially at 90o and 130o, (with no significant 
advantages for GGDH compared to EVH). Suga's cubic model 
performs slightly better than its quadratic version. This might be 
due to the fact that the cubic models are known to improve the 
predictions of curved flow. None of the models seems to mimic 
the measured velocity profile at 45o. It is likely that this 
discrepancy is caused by the fact that predicted velocity profiles 
upstream the bend are more flat than the measured one. It is 
known that an inviscid flow with a flat velocity profile upstream 
a bend causes a free-vortex flow in the bend with a higher 
velocity near the inner radius and lower velocity near the outer 
radius. Therefore, the predicted velocity profiles in this work at 
45o have their peak closer to the inner radius rather than the outer 
radius (as in the experimental data). When comparing the 
predicted and measured temperature profiles in figure 2, it should 
be noted that the temperatures are not normalised and therefore 
only the shape of these profiles should be considered rather than 
their level. The general impression is that the temperature 
profiles correspond well to their velocity counterpart and this 
indicates the dominating role of the flow field. Except the V2F-
results which differ from the rest, all models managed to predict 
the trends well. Suga's quadratic and cubic models performed 
similar. Likewise RSM-EVH and RSM-GGDH gave almost the 
same results. The review of the plots in figure 3 shows that all the 
used models could capture the complex secondary motions 
especially at 135o. The most dominating is, however, the main 
vortex (here counter-clockwise) which convects the cold high 
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Figure 2. Predicted velocity (top) and temperature (bottom) profiles (lines) on the symmetry plain obtained using Suga's quadratic & cubic model, 
V2F, RSM-EVH and RSM-GGDH at -2.2D, 3o, 45o, 90o, 130o, 177o, 2.2D and 4.5D and the experimental data (white circles, black only at Ω=90o). 



 

speed flow from the core towards the inner wall corner and later 
alongside the inner wall back towards the symmetry plane. This 
process brings cold high speed fluid near the inner wall which 
explains the double peak in the velocity profile and double dip in 
the temperature profile especially at 90o. The velocity vectors at 
-2.2D also show that, except V2F, all models have accounted for 
the anisotropy of turbulence in the inlet duct and predicted the 
turbulence induced secondary motion. 
 
Conclusions 
The flow and thermal fields in a square-sectioned 180o-bend were 
investigated using five turbulence models, namely Suga's 
quadratic and cubic low-Re k-ε, V2F k-ε, RSM-EVH and RSM-
GGDH. All models managed to mimic the general flow and 
thermal patterns. The V2F-version used in this study seems, 
however, to need modifications and/or re-tuning of its 
coefficients to reduce its redistribution of turbulence energy. The 
RSM models performed best but Suga's two k-ε variants, despite 
their simplicity and relatively low computational effort, 
performed well and might be suitable for industrial applications. 
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