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Abstract

This paper makes a ®rst attempt to survey and discuss the advances and trends in the formulations and
applications of the ®nite element modeling of adaptive structural elements. For most contributions, the speci®c
assumptions, in particular those of electrical type, and the characteristics of the elements are precised. The

informations are illustrated in tables and ®gures for helpful use by the researchers as well as the designers interested
in this growing ®eld of smart materials and structures. Focus is put on the development of adaptive piezoelectric
®nite elements only. However, papers on other applications and active systems are also listed for completeness

purpose. In total, more than 100 papers were found in the open literature. Taking this number as a measure of
research activity, trends and ideas for future research are identi®ed and outlined. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Since the early 70s, many ®nite element models have

been proposed for the analysis of piezoelectric struc-
tural elements. They were mainly devoted to the design
of ultrasonic transducers till the early 90s

[3,4,25,49,50,63,70,107]. By the late 80s, interests have
been directed towards applications in smart materials
and structures [98]. During the last two decades, sev-
eral review papers and bibliographies have appeared in

the open literature on the ®nite element technology
[71] and modeling of structural elements [69]. These
include sandwich plates [36], thin [111] and moderately

thick [34] shells, and layered anisotropic composite

plates and shells [79]. However, careful analysis of

these survey papers and those on the relatively new

®eld of `intelligent' or smart materials and structures

[26,76,77] indicates that the ®nite element modeling of

adaptive structural elements does not retain the

expected attention. In fact, this highly active appli-

cation area of ®nite element methods is in continuous

growth, particularly during the last ®ve years (Fig. 1).

Hence, it gains a certain maturity so that some piezo-

electric elements have become available in commercial

®nite element codes [67,72].

It is the objective of this paper to make a ®rst

attempt to survey and discuss the advances and trends

in the formulations and applications of the ®nite el-

ement modeling of adaptive structural elements,

namely, solids, shells, plates and beams. The under-

lying assumptions, in particular those of electrical type,

and the characteristics of the elements such as their
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shapes, independent variables, interpolation functions
degrees, and nodal degrees of freedom (dofs) are pre-

cised for the main contributions. The primary interest
is the analysis of piezoelectric-based rather than other
active materials-based adaptive structural ®nite element

formulations. The informations are presented in tables
and ®gures for helpful use by the researchers as well as
the designers interested in this continuously growing

®eld of smart materials and structures.
In the following, common theoretical formulations

used for ®nite element development are ®rst discussed

according to the variational equations used, and the
speci®c assumptions made to take into account the
electro-mechanical coupling. Then, the piezoelectric
®nite element characteristics are detailed for solids,

shells, plates and beams, separately. Particular atten-
tion is paid to the use or not of electric dof. Next, ap-
plications and current trends in smart ®nite element

modeling are brie¯y discussed. As a closure of this sur-
vey, some ideas are outlined for future research direc-
tions. More than 100 papers are listed alphabetically at

the references section. Therefore, this survey is surely
incomplete and the author wishes to apologize, in
advance, for any inadvertent omission of relevant pub-

lications.

2. Theoretical considerations

It is useful to recall the basic equations governing
the electroelastic behavior of piezo-electric continua,

which are the starting point to ®nite element formu-
lations. The virtual work and energy-based formu-
lations are then established. Next, some speci®c

problems related to the modeling of smart structures,
such as electro-mechanical coupling and induced po-
tential representations, and common assumptions

made to deal with them are discussed. Finally, conven-
tional and advanced actuation mechanisms used in
smart structures applications are outlined.

2.1. Basic piezoelectric equations

The electroelastic response of a piezoelectric body of

volume O and regular boundary surface S, is governed
by the mechanical, dynamic and electrostatic equili-
brium equations,

sij, j � fi � r �ui �1�

Di, i ÿ q � 0 �2�

where, fi, q, r, are mechanical body force components,
electric body charge and mass density, respectively. sij
and Di are the symmetric Cauchy stress tensor and

electric displacement vector components. They are re-
lated to those of linear Lagrange symmetric tensor eij
and electric ®eld vector Ei through the converse and

direct linear piezoelectric constitutive equations,

sij � Cijklekl ÿ ekijEk �3�

Di � eiklekl� 2ik Ek �4�

Cijkl, ekij and 2ik denote elastic, piezoelectric and
dielectric material constants. The strain tensor and
electric ®eld vector components are linked to mechan-

ical displacement components ui and electric ®eld po-
tential j, by the following relations,

eij � 1

2
�ui, j � uj, i � �5�

Ei � ÿj,i �6�

The piezoelectric body O, could be subject to either
essential or natural mechanical and electric boundary
conditions, or a combination of them, on its boundary
S,

ui � Ui �7a�

Fig. 1. Development rate of piezoelectric ®nite elements during the last decade.
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or

sijnj � Fi �7b�

j � V �8a�
or

Dini � ÿQ �8b�
where Ui, Fi, V, Q and ni are speci®ed mechanical dis-

placement and surface force components, electric po-
tential and surface charge, and outward unit normal
vector components.
The local three-dimensional electroelastic problem

consists of ®nding the mechanical displacement com-
ponents ui and electric potential j satisfying Eqs. (1)±
(8b) completed by adequate initial conditions.

2.2. Variational piezoelectric equations

For arbitrary space-variable and admissible virtual
displacements dui and potential dj, Eqs. (1) and (2)
are equivalent to,�
O

ÿ
sij, j � fi ÿ r �ui

�
dui dO�

�
O

ÿ
Di, i ÿ q

�
dj dO � 0 �9�

Integrating by parts, this equation, and using the
divergence theorem, leads to

ÿ
�
O
sijdui, j dO�

�
S

sijnjdui dS�
�
O
fidui dO

ÿ
�
O
r �uidui dOÿ

�
O
Didj,i dO�

�
S

Dinidj dS

ÿ
�
O
qdj dO � 0 �10�

Using the symmetry property of the stress tensor, the
natural boundary conditions (7b), (8b) and the electric

®eld-potential relation (6) give,

ÿ
�
O
sijdeij dO�

�
S

Fidui dS�
�
O
fidui dO

ÿ
�
O
r �uidui dO�

�
O
DidEi dOÿ

�
S

Qdj dS

ÿ
�
O
qdj dO � 0 �11�

Substituting the constitutive equations (3) and (4) into
Eq. (11) leads to the electric potential (or ®eld)-based
variational principle, which is the starting point of

®nite element formulations using independent variables
ui and j: In this case, it could be seen as the sum of
the conventional principle of virtual displacements

(®rst line of (11)), and that of virtual electric potential
(second line of (11)), as suggested in [30±32].

Supposing now that dui and dj are time-dependent
and vanishing for arbitrary but ®xed times t0 and t1,
the following expression holds,

ÿ
�t1
t0

r �uidui dt �
�t1
t0

d

�
1

2
r _ui _ui

�
dt �12�

and when it is used in Eq. (11), the extended Hamil-
ton's principle is obtained, for arbitrary space and

time-variable dui and dj vanishing at t0 and t1,

d
�t1
t0

�TÿU� dt � 0 �13�

T and U are the kinetic energy and extended potential
energy including the electric contribution, de®ned by

the following expressions,

T � 1

2

�
O
r _ui _ui dO �14�

U � 1

2

�
O
sijeij dOÿ

�
S

Fiui dSÿ
�
O
fiui dO

ÿ 1

2

�
O
DiEi dO�

�
S

Qj dS�
�
O
qj dO �15�

If the constitutive equations (3) and (4) are substituted
in the ®rst and fourth integrals of Eq. (15), Hamilton's

principle (13) reduces then to the stationarity of the
Lagrangian functional L � TÿU, for arbitrary admis-
sible dui and dj,

dL � dTÿ dU � 0 �16�

Introducing the following electromechanical energy H,

and the work of external mechanical and electric body
and surface forces and charges,

H � 1

2

�
O

ÿ
sijeij ÿDiEi

�
dO �17�

W �
�
S

Fiui dS�
�
O
fiui dOÿ

�
S

Qj dS

ÿ
�
O
qj dO �18�

the following relation between the extended potential

energy, the electromechanical energy and work of
external mechanical and electric loads is obtained,

U � HÿW �19�

This leads to the more common form of the variational
equation (16) when relations (3) and (4) are used in
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Eq. (17); i.e., for admissible dui and dj,

dTÿ dH� dW � 0 �20�
Variational equations ((11), (16) and (20)) with the
constitutive relations ((3) and (4)) are the most used

for piezoelectric ®nite element formulations. However,
other variational formulations were also met in the
covered literature such that proposed in [32] using the
mechanical displacement ui, electric potential j and

displacement Di as independent variables. Therefore,
the electric ®eld is computed from the direct constitu-
tive equation (4) but, in terms of strains and electric

displacements rather than from the electric ®eld-poten-
tial relation (6). The latter was introduced in (10) as a
constraint via a Lagrange multiplier. The Hu±Washizu

principle was also modi®ed in [87,88] to include virtual
work done by electric forces.

2.3. Speci®c problems and common assumptions

This sub-section focuses on the representation of the

electromechanical coupling inherent to piezoelectric
materials, the widely used assumption of linear poten-
tial and its e�ects on the piezoelectric coupling rep-

resentation, parallel polarization and applied electric
®eld assumption, and the various advanced actuation
mechanisms used in smart structures applications, in
particular, the recent shear one.

2.3.1. Electromechanical coupling
The major feature added by the piezoelectric ma-

terial to the standard structural ®nite element modeling

is its electromechanical coupling. Moreover, due to the
fact that the electric charge is distributed on both top
and bottom surfaces of a piezoelectric patch, consider-
ing the electric contribution in the discretization pro-

cedure is a hard task, particularly for two and one-
dimensional mid-plane conventional formulations.
The full electromechanical coupling and surface

characteristics could be handled through three-dimen-
sional ®nite element formulations with an extended
nodal dofs vector containing both mechanical and elec-

tric dofs. However, those done assuming through-
thickness linear variation of the electric potential
would neglect the induced potential and the electrome-
chanical coupling will be partial, as will be shown

later. It is thought that a quadratic through-thickness
variation of the electric potential would enhance the
electromechanical coupling. In fact, it was shown that

the asymptotic electric potential of a short circuited
thin piezoelectric plate is quadratic in thickness [75].
This was con®rmed for shear ¯exible plates by higher

order 2D-theories [16,20], and was assumed for brick
[58,108] and plate [16] ®nite element formulations.
The fully coupled electromechanical linear system

describing the behavior of a smart structure with elec-
tric nodal or element dofs representation is often

uncoupled through their Guyan condensation [3,16,21±
23,83,84,99,101,102,108]. This leads to an increase of
the structure's sti�ness and an additional electric load

vector. It is thought that these results are equivalent to
the modi®cation of the constitutive equations and the
additional electric loads obtained without the use of

electric dofs, but considering the induced potential
[11,12,74]. The main di�erence is that, the ®rst conden-
sation is made on the discretized equations, whereas

the second is on the variational formulation.
The coupled electromechanical system can also be

taken into account by iterative solution between direct
and converse e�ect equations [30]. This method has

the advantage to avoid the use of enlarged nodal
unknown vector, but still neglects the induced poten-
tial.

2.3.2. Induced electric potential
A widely used assumption is the through-thickness

linear variation of the electric potential. Consequently,
the induced potential is systematically neglected. To il-
lustrate the in¯uence of this hypothesis on the piezo-
electric coupling, the electric potential is decomposed

into a linear part j0, known from the prescribed po-
tentials, and an unknown part f, representing the
induced potential [74],

j � j0 � f �21�

Using this decomposition, together with the constitu-
tive equations (3) and (4), and after some manipula-

tions, Eq. (11) becomes,�
O

�
Cijklekldeij ÿ eiklekldEi

�
dOÿ

�
O

�
ekijEk�f�deij �

2ik Ek�f�dEi

�
dO�

�
O
r �uidui dO

�
�
O
fidui dO�

�
S

Fidui dS�
�
O
qdj dO�

�
S

Qdj dS

�
�
O

�
ekijEk�j0 �deij � 2ik Ek�j0 �dEi

�
dO �22�

It is clear then, that the second integral of the left

hand side (l.h.s.) of (22) vanishes when the induced po-
tential f (or ®eld Ek�f�� is neglected. The piezoelectric
e�ect is then represented only by a partial electrome-

chanical coupling (second term in the ®rst integral of
the l.h.s.) and an equivalent electric load vector (last
integral on the r.h.s.). Moreover, since for actuation

problems only, the variations of the electric ®eld com-
ponents are zero and electric charges are often not
considered, the above equation reduces to,
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�
O
Cijklekldeij dO�

�
O
r �uidui dO

�
�
O
fidui dO�

�
S

Fidui dS�
�
O
ekijEk�j0 �deij dO

�23�
Hence, the piezoelectric e�ect is represented by the
equivalent electric load vector (last term in (23)) and
an increase of the structure's sti�ness and mass, some-

times neglected [40]. This is often used for the actuator
variational formulation. Above equation can also be
obtained by considering the converse constitutive

equation (3), with a linear potential assumption, in a
conventional mechanical variational principle. An
equation similar to (23) could also be obtained by the
so-called thermal analogy approach. It is based on the

resemblance between thermoelastic and converse piezo-
electric constitutive equations when Eq. (3) is written
in the form,

sij � Cijkl�ekl ÿ Lkl �; Lkl � C ÿ1ijklemijEm � dmklEm �24�

Lkl is interpreted as initial (or induced actuation) strain

tensor components, and are often computed as thermal
strains using this analogy. Hence, thermoelastic ®nite
element analysis codes could be used to investigate
smart structures.

2.3.3. Piezoelectric actuation mechanisms used in smart
structures applications

Most piezoelectric ®nite element formulations
assume electric ®eld and poling direction along the
piezoelectric patch thickness. Only longitudinal strains

or stresses could then be induced by monolithic piezo-
electric materials. This is their conventional extension
actuation mechanism, which could be seen as the basis
of the so-called pin-force or engineering approach,

often used at the early 80s for the validation of the
piezoelectric converse e�ect. However, it could be
shown that for perpendicular electric ®eld and polariz-

ation, shear resistant monolithic piezoelectric materials
could induce transverse shear strains or stresses
[11,12]. Comparison of both the mechanisms on canti-

lever smart beams [13,14] indicates that only thin
extension actuators are e�cient. On the contrary,
shear actuators are more e�cient for a medium thick-
ness range. Moreover, for sti�er basic structure, shear

actuation mechanism presents better performance than
extension one. It was also found that shear actuated
beam is less deformed. Hence, the bending stress is

also smaller. This is an advantage for brittle piezocera-
mics. These performances were observed numerically
only. Therefore, they need to be con®rmed experimen-

tally for di�erent structural elements. Besides, current
commercially available piezoceramics are not opti-
mized for their shear piezoelectric response. They were

optimized for their extension piezoelectric properties
only. This relatively new concept of shear actuation

merits more investigations and is thought to be prom-
ising.
Another common assumption is that only transverse

components of the electric ®eld and displacement are
retained for most piezoelectric ®nite element formu-
lations. This implicitly supposes that the in-plane com-

ponents are much smaller and could be neglected.
However, using interdigitated electrodes, transverse
actuation could also be introduced [31,32]. A complex

poling pattern results in the actuator due to induced
in-plane components of electric ®eld which should be
accounted for any model.
By sandwiching a piezoelectric layer between o�-axis

laminae, such as in the piezoelectric ®ber composites
[1,31,32], twisting deformation can be induced through
transformed piezoelectric constants. This twisting is

caused by the extension-twisting coupling. Four sec-
tored sensors/actuators can also produce torsional
twisting beside extensional and bending actuations,

leading to a multi-axial active control system [91].

3. Finite element development

During the last decade, ®nite element modeling of
smart structures has attracted numerous researchers
and has become a major area of research (Fig. 1).

Early investigations were devoted to 3D elements with
nodal electric potential dofs. They take account of the
surface characteristics and full electro-mechanical

coupling, inherent to piezoelectric patches. However, it
was found that these were too thick to modelize very
thin structures. Hence, attention was directed to 2D el-

ements, despite the di�culty of the conventional mid-
plane formulations to take into account potentials on
upper and lower surfaces. This motivates the recent
development of one- and two-dimensional elements

free of electric dofs (Fig. 2). Standard ®nite elements
are then used to compute mechanical behavior (displa-
cement, strains, stresses), and electrical quantities

(charge, current, potential) are deduced from the

Fig. 2. Trends in development of piezoelectric ®nite elements.
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speci®c sensing/actuation relations. This is often
achieved through several simpli®cations (cf. discussion

in above section).
In the following, ®nite element characteristics such

as their shapes, variables, nodal/element dofs are

detailed separately for solid, shell, plate and beam
elements. Fig. 2 indicates that nearly all solid

and shell ®nite elements have electric dofs. How-
ever, for plates and beams, electric dofs are often
avoided.

Table 1

Characteristics of some piezoelectric solid ®nite elements

A. Benjeddou / Computers and Structures 76 (2000) 347±363352



3.1. Solid elements

Three-dimensional piezoelectric solid elements gen-

eralize those used in structural mechanics through

an extended dofs vector, i.e., containing additional

electric dofs. They were either tetrahedral [3,32] or

brick elements [5,24,25,31,38,55,56,58,65,66,90,99,100,

102,105,108]. The electric potential was supposed lin-

ear except for the 20-node hexahedron for which it

is quadratic [4,58,108]. Thermal piezoelectric e�ects

[76] were considered for the eight-node [105], 18-

node [5] and 20-node [58] hexahedral elements.

Nonlinear constitutive relations were considered for

the four-node tetrahedral [32] and eight-node hexa-

hedral [31] element. This was retained for more

accurate representation of the piezoelectric material

response at high electric ®elds. These elements have

additional internal variables to represent the phase/

polarization state of each element. They are adapted

at each simulation step, based on a phenomenologi-

cal model. Beside, internal dofs were added to

enhance the behavior of the eight-node brick el-

ement when used for very thin structures. Hence,

quadratic incompatible modes were included for

mechanical displacements in [99±101,104] and for

mechanical displacements and electric potential in

[31].

Early elements did not deal with layered structures

[3,24,25,90,99,100,108]. These were then handled

through the equivalent single layer model [38]. The

electric dofs are also often condensed by the Guyan

procedure to uncouple the electro-mechanical problem

[3,38,58,99±101,105]. Detailed description of some

piezoelectric solid elements is given in Table 1. It

Table 2

Characteristics of some piezoelectric shell ®nite elements
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Table 3

Characteristics of some piezoelectric plate ®nite elements with electric dofs
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appears that quadratic tetrahedral element was not

proposed. It is also thought that quadratic elements

would be expected to behave better than linear ones,

since the induced potential is taken into account.

3.2. Shell elements

Only few piezoelectric shell elements were found in
the literature (Table 2). A four-node shell element

Table 4

Characteristics of some piezoelectric plate ®nite elements without electric dofs
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extending the shallow shell shear deformation theory

was proposed using an equivalent single layer model

for a three-layer shell [60,61]. Upper and lower

nodal electric potential dofs were chosen to rep-

resent surface characteristics of the piezoelectric

layer. Reduced integration (RI) was used to avoid

shear locking. An eight-node quadrilateral shell el-

ement [95], free of electric dofs, was also formulated

using the 3D-degenerated shell theory. The piezo-

electric e�ect was treated as an intial strain pro-

blem.

An axisymmetric three-node triangular shell el-

ement was developed to study Mooney transducers

[107]. An eight-node quadrilateral shell element was

also proposed to predict vibration characteristics of

piezoelectric discs [35]. These elements do not deal

with multi-layers. Therefore, a 12-node 3D-degener-

ated shell element, with layer-wise constant shear

angle, was formulated in [105]. Displacements and

electric potential were supposed in-plane quadratic

and through-thickness linear.

Plate elements could also be adapted to modelize

shell structures but after a geometric transformation,

to take into account the shell curvatures. 3D solid

elements were also used in the literature for adap-

tive shell modeling. However, it is thought that

more research e�orts are needed to better under-

stand the in¯uence of the curvatures on the piezo-

electric actuators and sensors. Investigations could

also be directed to shear actuated shells, in particu-

lar, in presence of internal ¯uid (structural acous-

tics).

3.3. Plate elements

As discussed above, the representation of the surface
electric characteristics of the piezoelectric layers is

somewhat di�cult for conventional mid-plane two-
dimensional formulations. This explains the dominance
of electric dofs-free techniques for recent piezoelectric

®nite elements development. However, for plates, Fig. 2
indicates that both techniques (with and without elec-
tric dofs) were used, contrary to the solid and shell el-

ements. Hereafter, these are discussed separately.

3.3.1. With electric dofs representation

Only quadrilateral elements were proposed for ®nite
element modeling of adaptive plates (Table 3). A four-
node element, with in-plane variable dofs, was formu-

lated using discrete layer theories for laminated piezo-
electric plates [4,20,62,84]. The potential and in-plane
displacements were piecewise linear whereas, the de¯ec-

tion could be either constant or linear. This formu-
lation has the advantage to represent a quadratic
potential, thanks to the numerical through-thickness
®nite element subdivisions.

A four-node element was proposed for active control
of Kirchho�±Love plate bending vibrations [21±23].
Another one was obtained by combination of a 3D

piezoelectric element, de®ned by pseudo-nodes for top
and bottom surfaces, and an ACLD element [109,110].
Also, an eight-node quadrilateral element was formu-

lated using a higher order shear deformable displace-
ment theory, but assuming through-thickness linear
variation of the electric potential [78]. Previous el-

Table 5

Characteristics of some piezoelectric beam ®nite elements with electric dofs

A. Benjeddou / Computers and Structures 76 (2000) 347±363356



Table 6

Characteristics of some piezoelectric beam ®nite elements without electric dofs
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ements have electric potential nodal dofs. Nevertheless,

a Mindlin plate element with one potential dof per
piezo-electric layer, and using uniform reduced numeri-
cal integration and hourglass stabilization was also
proposed in Ref. [93].

A quadratic nine-node element, formulated on the
basis of a higher order shear deformation theory, was
suggested in Ref. [16]. It ful®lls zig-zag e�ect for in-

plane displacements, interlaminar equilibrium and top/
bottom transverse shear stress conditions. Beside, the
electric potential was assumed quadratic in the plate

thickness and is described at the layer level by top,
central and bottom electric potential dofs. Stress and
electric dofs were condensed at the layers system level.
The only piezoelectric ®nite element with the transverse

electric ®eld as electric dof, was proposed in Ref. [112]
using a Mindlin plate theory and through-thickness
linear voltage.

It is worthy to note that three-layer theories were
not applied to piezoelectric plate ®nite elements with
electric dofs. Also, shear actuation mechanism was not

studied for smart plates. This may be due to the di�-
culty to handle in-plane polarized patches to be used
for this mechanism.

3.3.2. Without electric dofs representation
Most electric dofs-free elements used an equivalent

single layer model for multilayer piezoelectric plates
[6,17±19,39,45±47,51,52,68,85,86] (Table 4). Three-

layer theory was retained to modelize a seven-layer
ACLD plate system [10]. In fact, the piezosensors and
plate were assumed to consitute a shear-free single

layer. Geometrical non linearity [29] and thermal
expansion [19,86] of the piezoelectric patches were also
considered.

In above elements, the piezoelectric e�ect is present
via its equivalent electric load, given by the thermal
analogy approach [18,29,45±47,89] or the converse

constitutive relation [6,19,39,59,68]. Classical discre-

tized linear systems with additional force term are get
for the actuator equation. For the sensor equation, the
direct constitutive relation is integrated over electroded
surfaces to obtain sensed electric charge, then electric

current and potential are deduced through control
gains. A control law is then used to close the loop.
It is thought that more investigations are needed to

evaluate the shear e�ect on the piezoelectric actuation/
sensing performance. Sandwich plate formulations
with in-plane polarized piezoelectric cores would be

very promising, as was shown for beams [11,12].

3.4. Beam elements

There are few piezoelectric beam elements with elec-
tric dofs representation (Table 5). It may be due to the
fact that the electric dofs could be easily condensed on
the continuum formulation level for one-dimensional

space equations.
The Hu-Washizu variational principle was extended

to include electric loads [87,88] in order to formulate a

Timoshenko beam element with o�set nodes. Beside
the mechanical dofs, upper and lower electric potential
dofs per piezoelectric element were considered. An

Euler±Bernoulli element with electric potential nodal
dofs was also developed for axial vibration and bend-
ing control [15].
Electric dofs-free beam ®nite elements are numerous

(Table 6). Four layer-wise elements based on thermal
analogy approach were formulated early in the 90s [82].
They are two equivalent single-layer models, represent-

ing classical and shear beam theories, and two multi-
layer models with in-plane piecewise linear axial displa-
cement and constant or cubic Hermite de¯ection. A

number of through-thickness ®nite element subdivi-
sions, greater or equal to material layers, could be con-
sidered. As indicated for the corresponding plate

Fig. 3. Current trends in smart ®nite element development.
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element [41,84], it has the advantage to better rep-

resent the induced potential and the transverse shear

behavior.

Sandwich theory was used to formulate a two-node

element of ACLD beam systems [8,9,81,106]. The

shear e�ect was neglected for the piezo and basic

beam. The axial displacements of the latter layers and

their de¯ection were retained as mechanical dofs. How-

ever, in Refs. [11,12], the shear e�ect was considered

for piezoelectric cores of sandwich piezoelectric beams.

The mean and relative axial displacements of the core

[11] or the faces [12] and their de¯ection are retained

as mechanical dofs. Comparisons of both models [14]

for the extension and shear actuation mechanisms [13]

were performed. It was found that the former induces

boundary point actuation loads, whereas the latter

gives distributed actuation loads, and has better per-

formance for sti�er base structure and for medium

thickness range. These results were also con®rmed for

active control [97] and ACLD treatments [96].

Timoshenko and Bernoulli±Euler beam ®nite el-

ements were proposed in [2,27,48,73,90,94]. They were

extended to include Saint-Venant and warping tor-

sions in PZT/Ep composites for bending vibrations

control [1]. The de¯ection was assumed quadratic and

the rotational and twisting angles are also dofs. A

quadratic variation of the axial displacement and

shear angle in conjunction with a cubic Hermite

de¯ection were also assumed for a three-node beam

element [64]. It was based on thermal analogy and a

three-layer theory with shear-free piezo/beam layers.

An elastic part of the shear angle was used as ad-

ditional dof to represent a time-domain viscoelastic

model for ACLD treatments.

4. Applications and current trends

Careful open literature analysis indicates that ®nite

element modeling applications were mostly devoted to

static, modal, harmonic and transient linear behavior
of adaptive plates and beams (Fig. 3). An active area

of research during the last ®ve years was also the

active constrained layer damping control. It consists
of adding to or replacing the conventional elastic con-

straining layer of the passive sandwich damping treat-

ment by an active layer. The sensor could be either
an additional piezoelectric layer or a strain gauge.

This relatively new concept combines the advantages

of both passive and active treatments in a unique sys-
tem, in particular, safety and stability of the control

device.

Recent ®nite element analyzes were directed to ther-
mal e�ects [19,58,62,104], active noise control

[7,54,57,80,90,91], damage detection due to composite

delamination [48] or low velocity impact [112], active
buckling control [18], geometric or/and material non

linearities [31,32,98,103], anisotropy and non homogen-

eity [33], active ®ber composites [1,32,90,91] and ¯utter
supression [89].

It is worthwhile to notice that ®nite element tech-

niques were also applied with other active materials

such as in electrostrictive [43,44] and magnetostrictive
[53] systems. The boundary ®nite element technique

was also proposed for piezoelectric solids [42,75].

Beside, several researchers have also simply used gen-
eral purpose ®nite element commercial codes to check

analytical or experimental analyses. These were beyond

the scope of this overview and have not been cited
here.

Table 7

Piezoelectric ®nite elements found in the covered literature

Elements Shape and approximations With electric dofs Without electric dofs

Solid Four-nodes linear tetrahedron Available Not available

Eight-nodes linear hexahedron k k
20-nodes quadratic hexahedron k k

Shell Three-nodes linear axisymmetric ¯at triangle k k
Eight-nodes quadratic axisymmetric quadrangle k k
Four-nodes linear ¯at quadrangle k k
Eight-nodes 3D-degenerated quadratic quad. Not available Available

12-nodes 3D-degenerated quadratic prism Available Not available

Plate Three-nodes linear triangle Not available Available

Four-nodes linear quadrangle Available k
Eight-nodes quadratic quadrangle k k
Nine-nodes quadratic quadrangle k k

Beam Two-nodes linear element k k
Three-nodes quadratic element Not available k
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5. Conclusions

Advances in ®nite element modeling of smart struc-

tural elements, during the last decade, have been pre-
sented. It was found that, although a relative maturity
has been reached, some topics have not received much

attention. In particular, there is a lack of 2D curved
and ACLD shell ®nite elements, and some quadratic
elements with electric dofs representation (Table 7).

Also, shear actuation mechanism, present in perpen-
dicular polarization and applied electric ®eld con-
ditions, was not investigated for other structural
elements than beams. In contrary to external ¯uid-

loaded structures, internal ¯uid-loaded ones were not
su�ciently investigated. These are some themes, beside
those outlined in the previous sections, to which future

developments would be directed.
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