Vectors in 3-D space:

A vector along A-B: A vector \boldsymbol{F} along the line A-B (and of magnitude F) can be obtained from
$\boldsymbol{r}=\left(x_{B}-x_{A}\right) \boldsymbol{i}+\left(y_{B}-y_{A}\right) \boldsymbol{j}+\left(z_{B}-z_{A}\right) \boldsymbol{k}$
$\boldsymbol{u}=\frac{\boldsymbol{r}}{r}=\frac{\left(x_{B}-x_{A}\right) \boldsymbol{i}+\left(y_{B}-y_{A}\right) \boldsymbol{j}+\left(z_{B}-z_{A}\right) \boldsymbol{k}}{\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}}$
$\boldsymbol{F}=F \frac{\boldsymbol{r}}{r}=F \boldsymbol{u}$

The dot product: The dot product of vectors \boldsymbol{F} and \boldsymbol{E} is given by $\boldsymbol{F} \cdot \boldsymbol{E}=F E \cos \theta=F_{x} E_{x}+F_{y} E_{y}+F_{z} E_{z}$

Projection of a vector by using the dot product: The projection of vector \boldsymbol{F} along the unit vector \boldsymbol{u} is given by
$\boldsymbol{F} \cdot \boldsymbol{u}=F \cos \theta$

