Vectors in three dimensional space

$\boldsymbol{F}=F_{x} \boldsymbol{i}+F_{y} \boldsymbol{j}+F_{z} \boldsymbol{k}$
$|\boldsymbol{F}|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$
where $|\boldsymbol{F}|$ is the magnitude of vector \boldsymbol{F}
This figure shows the Right handed system, which is a coordinate system represented by base vectors which follow the right-hand rule (four fingers from x to y, and thumb will be along z direction).

Base vectors for a rectangular coordinate system:
A set of three mutually orthogonal unit vectors

Rectangular component of a Vector: The projections of vector \boldsymbol{F} along the x, y, and z directions are F_{x}, F_{y}, and F_{z}, respectively.

If the angle between F and its components $\left(F_{x}\right)$ on axis x is α, then

$$
\cos \alpha=\frac{F_{x}}{|\boldsymbol{F}|}=\frac{F_{x}}{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}
$$

Also, if the angle between F and its components $\left(F_{y}\right)$ on axis y is β, then

$$
\cos \beta=\frac{F_{y}}{|\boldsymbol{F}|}=\frac{F_{y}}{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}
$$

Similarly, if the angle between F and its components $\left(F_{z}\right)$ on axis z is γ, then
$\cos \gamma=\frac{F_{z}}{|\boldsymbol{F}|}=\frac{F_{z}}{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}$
$\cos \alpha, \cos \beta$ and $\cos \gamma$ are called: Direction cosines

$$
\cos ^{2}(\alpha)+\cos ^{2}(\beta)+\cos ^{2}(\gamma)=1
$$

Coordinates of points in space: The triplet (x, y, z) describes the coordinates of a point.
The vector connecting two points: The vector connecting point A to point B is given by $\boldsymbol{r}=\left(x_{B}-x_{A}\right) \boldsymbol{i}+\left(y_{B}-y_{A}\right) \boldsymbol{j}+\left(z_{B}-z_{A}\right) \boldsymbol{k}$

A unit vector along the line A-B: A unit vector along the line A-B is obtained from $\boldsymbol{u}=\frac{\boldsymbol{r}}{r}=\frac{\left(x_{B}-x_{A}\right) \boldsymbol{i}+\left(y_{B}-y_{A}\right) \boldsymbol{j}+\left(z_{B}-z_{A}\right) \boldsymbol{k}}{\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}}$

