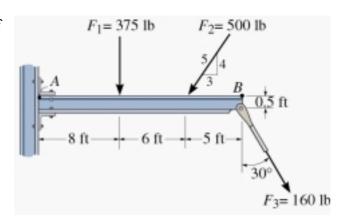
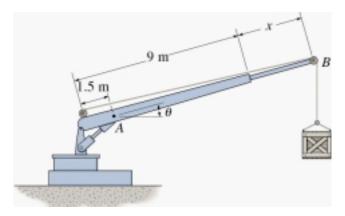

Momemt 1

Problem 1:


Determine the magnitude and directional sense of the moment of the force at A about point P.

Solution:

Problem 2:


Determine the moment about point B of each of the three forces acting on the beam.

Problem 3:

The crane can be adjusted for any angle $0 \le \theta \le 90$ and any extension $0 \le x \le 5m$. For a suspended mass of 120 kg, determine the moment developed at A as a function of x and θ .

What values of both x and θ develop the maximum possible moment at A? Compute this moment. Neglect the size of the pulley at B.

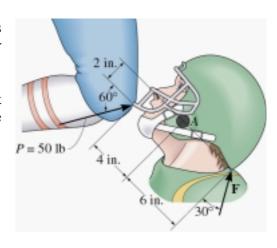
Solution:

$$(+M_A = -120(9.81)(7.5 + x)\cos\theta$$

$$\Rightarrow M_A = \{-1177.2\cos\theta(7.5 + x)\}\text{N.m}$$

$$\Rightarrow M_A = \{1.18\cos\theta(7.5 + x)\}\text{kN.m (clockwise)}$$
The maximum moment at A occurs when $\theta = 0^\circ$ and $x = 5\text{m}$

$$(+(M_A)_{\text{max}} = \{-1177.2\cos0^\circ(7.5 + 5)\}\text{N.m}$$


$$\Rightarrow (M_A)_{\text{max}} = -14715 \text{ N.m}$$

$$\Rightarrow (M_A)_{\text{max}} = 14.7 \text{ kN.m (clockwise)}$$

Problem 4:

Serious neck injuries can occur when a football player is struck in the face guard of his helmet in the manner shown, giving rise to a guillotine mechanism.

Determine the moment of the knee force P = 50 lb about point A. What would be the magnitude of the neck force F so that it gives the counterbalancing moment about A?

Solution:

$$(+M_A = 50\sin 60^{\circ}(4) - 50\cos 60^{\circ}(2)$$

$$\Rightarrow M_A = 123.2 = 123 \text{ lb.in})$$

$$123.2 = F\cos 30^{\circ}(6)$$

$$\Rightarrow F = 23.7 \text{ lb}$$