Summary of equations

Moment of a force: $\mathbf{M}_o = \mathbf{r} \times \mathbf{F}$

Scalar projection of A along e: A · e

Equivalent systems: Two systems are equivalent if the resultant force for the systems is equal and if

the resultant moment for the systems is equal

Equilibrium for a particle: $\sum \mathbf{F} = 0$

Equilibrium for a rigid body:
$$\sum \mathbf{F} = 0$$
Equilibrium for a rigid body:
$$\sum \mathbf{M}_o = 0$$

Centroid of a line: $x_c = \frac{1}{L} \int_L x dL$, $y_c = \frac{1}{L} \int_L y dL$, $z_c = \frac{1}{L} \int_L z dL$

Composite bodies: $x_c = \frac{\sum L_i \bar{x}_i}{\sum L_i}, \quad y_c = \frac{\sum L_i \bar{y}_i}{\sum L_i}, \quad z_c = \frac{\sum L_i \bar{z}_i}{\sum L_i}$

Centroid of an area: $x_c = \frac{1}{A} \int_A x dA$, $y_c = \frac{1}{A} \int_A y dA$, $z_c = \frac{1}{A} \int_A z dA$

Composite bodies: $x_c = \frac{\sum A_i \overline{x_i}}{\sum A_i}, \quad y_c = \frac{\sum A_i \overline{y_i}}{\sum A_i}, \quad z_c = \frac{\sum A_i \overline{z_i}}{\sum A}$

Centroid of a volume: $x_c = \frac{1}{V} \int_V x dV$, $y_c = \frac{1}{V} \int_V y dV$, $z_c = \frac{1}{V} \int_V z dV$

 $x_c = \frac{\sum V_i \overline{x_i}}{\sum V_i}, \quad y_c = \frac{\sum V_i \overline{y_i}}{\sum V_i}, \quad z_c = \frac{\sum V_i \overline{z_i}}{\sum V}$ Composite bodies:

Theorems of Pappus:

Surface of revolution: $A = 2\pi y_c L$

Volume of revolution: $V = 2\pi y_c A$

Static friction: $f \le \mu_s N$, Pending Motion: $f = \mu_s N$

Kinetic friction: $f = \mu_k N$

Belt friction: $T_2 = T_1 e^{\mu \theta}$

 $I=\int r^2dA$ Area moment of inertia: $A \qquad , \qquad I=\overline{I}+Ad^2 \ , \qquad J_o=I_x+I_y$ $I=\int r^2dm$ Mass moment of Inertia: $m \qquad , \qquad I=\overline{I}+md^2$