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1. Abstract
The widely used static topology optimization methods try to find optimal design of structures under loads that are
static or vary slowly. However, when the loads change rapidly, their time-dependent characteristic and the inertia
effect must be taken into consideration, and therefore dynamic response topology optimization methods should be
employed. Two difficulties in solving such problems are the treatment of time-dependent responses and sensitivity
analysis. This paper proposes a one-parameter functional to approximate the extreme value of time-dependent
response. The accuracy of the approximation can be controlled by the parameter and some of its important prop-
erties are discussed. The proposed functional is incorporated into topology optimization problem to minimize the
maximum value of time-dependent response at prescribed material volume. The displacement of a specific point
of the structure is considered. The density-based approach is used to solve the topology optimization problems
and the adjoint variable method is employed to perform sensitivity analysis. The design variables are updated by
the Method of Moving Asymptotes. Two numerical examples are conducted to demonstrate the effectiveness of
the proposed method and the time-dependent characteristic of the dynamic loads and inertia effect on the topology
optimization results.
2. Keywords: Time-dependent response Topology Optimization One-parameter functional Adjoint variable method.

3. Introduction
The widely used static topology optimization methods try to find optimal design of structures under loads that are
static or vary slowly[1]. However, when the loads change rapidly, the time-dependent characteristic and inertia
effect must be taken into consideration, and therefore dynamic response topology optimization methods should
be employed[2]. This work tries to minimize the maximum dynamic response of structure at prescribed material
volume. Two difficulties in solving such problems are the treatment of maximum operator in the objective function
and sensitivity analysis. This work proposes a one-parameter functional to approximate the maximum value of
time-dependent response and incorporated it into topology optimization problem. The density-based approach is
used to solve the topology optimization problems and the adjoint variable method is employed to perform sensi-
tivity analysis. The design variables are updated by the Method of Moving Asymptotes. Two numerical examples
are conducted to demonstrate the effectiveness of the proposed method and the time-dependent characteristic of
the dynamic loads and inertia effect on the topology optimization results.
4. One-parameter Functional to Approximate the Extreme Value of Time-dependent Response
Let f (t) be a continuous function defined on the interval [0,T ], M and m respectively its maximum and minimum
values . Zhuang and Xiong[3] proposed a functional ψ( f ,α) to approximate M based on the discrete form of
Va-approximation[4]

ψ( f ,α) =

∫ T
0 f (t)α f (t)dt∫ T

0 α f (t)dt
(1)

where α is a positive constant and when it tends to positive infinity, ψ( f ,α) tends to M.
This work makes a simple transformation p = lnα and obtains the following one-parameter functional.

φ( f , p) =
∫ T

0 f (t)ep f (t)dt∫ T
0 ep f (t)dt

(2)

The functional has the following properties:
(i) m ≤ φ( f , p)≤ M.
(ii) lim

p→−∞
φ( f , p) = m, lim

p→+∞
φ( f , p) = M.

(iii) φ( f , p) is nondecreasing.
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The proof of (i) and (ii) is easy and will be omitted here. To prove (iii), we note that

dφ
d p

=
(
∫ T

0 f 2(t)ep f (t)dt)(
∫ T

0 ep f (t)dt)− (
∫ T

0 f (t)ep f (t)dt)2

(
∫ T

0 ep f (t)dt)
2 (3)

Thanks to the Cauchy-Schwarz inequality, we have

(
∫ T

0
f 2(t)ep f (t)dt)(

∫ T

0
ep f (t)dt)≥ (

∫ T

0
f (t)ep f (t)dt)2 (4)

so dφ/d p ≥ 0, which implies (iii). It also can be proved that dφ/d p = 0 iff f (t) is a constant function.
According to the properties listed above, φ( f , p) can be a good approximation to the maximum or minimum

value of the function f (t) when the value of p is sufficiently large or small. More importantly, the accuracy
of this approximation can be controlled by adjusting the parameter p. When increasing the value of p, φ( f , p)
approximates the maximum value of the function better; on the contrary, if the value of p is decreased, φ( f , p)
approximates the minimum value of the function better.
5. Maximum Dynamic Response Topology Optimization
5.1. Maximum Dynamic Response Topology Optimization Formulation
In order to solve the dynamic response topology optimization problem, the popular density-based approach is
employed. The density-based topology optimization approach assigns each element e a density variable ηe and
then links its Young’s modulus Ee and structural density(mass density) ρe with ηe by appropriate interpolation
schemes. To prevent the appearance of the localized modes in dynamics analysis, the polynomial interpolation
model proposed in[5] will be used.

Ee = E0(15η3
e +ηe)/16 (5)

ρe = ρ0ηe (6)

where E0 and ρ0 respectively are the Young’s modulus and structural density of the solid material.
By using the density-based approach, the dynamic response topology optimization problem in the time domain

can be formulated as (7). The objective is to minimize the maximum dynamic response of the structures during
the loading phase.

min
η

max
0≤t≤T

f (u(t),η)

s.t. Mü(t)+Cu̇(t)+Ku(t) = f(t)

g(η) = V(η)−Vmax =
N
∑

e=1
ηeve −Vmax ≤ 0

0 < ηmin ≤ η ≤ 1

(7)

where f (u(t),η) is the dynamic response of the structure at time t. M, C and K are respectively the global mass,
damping and stiffness matrices. N is the number of elements, ve is the volume of element e and Vmax is the
prescribed volume of total material. ηmin is a positive lower bound vector assigned to η to avoid singularity of
the stiffness matrix during topology optimization process. Given the value of the design variable vector η and
the initial condition of the structure u(0) = u0, u̇(0) = u̇0, the displacement vector u(t), velocity vector u̇(t) and
acceleration vector ü(t) can be obtained by solving the dynamic equilibrium equations.

It is difficult to solve this problem directly, here we replace the objective function by the one-parameter func-
tional (2) and formulate the following topology optimization problem.

min
η

φ( f , p)

s.t. Mü(t)+Cu̇(t)+Ku(t) = f(t)

g(η) = V(η)−Vmax =
N
∑

e=1
ηeve −Vmax ≤ 0

0 < ηmin ≤ η ≤ 1

(8)

5.2. Sensitivity Analysis

As we wish to apply a gradient-based optimization algorithm to find the optimal material distribution of the
design, the sensitivity of the objective function with respect to the design variables must be evaluated. Considering
that the number of design variables is larger than the number of constraints in topology optimization problems, the
adjoint variable method[6] is preferred.

We assume that the loads and the initial conditions are independent of the design, that is ∂ f/∂ηe = 0,∂u0/∂ηe =
0,∂ u̇0/∂ηe = 0. Then according to the adjoint variable method, when seeking the derivative ∂J/∂ηe, it can be
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augmented with the product of a Lagrangian multipliers λ (t) and the derivative of the residual(which is zero at
equilibria)

∂φ
∂ηe

=
∂φ
∂ηe

+
∫ T

0
λ T ∂

∂ηe
(Mü+Cu̇+Ku− f)dt

=Cp

∫ T

0
(1+ p f − pφ)ep f (

∂ f
∂ηe

+
∂ f
∂u

∂u
∂ηe

)dt +
∫ T

0
λ T ∂

∂ηe
(Mü+Cu̇+Ku)dt

=Cp

∫ T

0
(1+ p f − pφ)ep f ∂ f

∂ηe
dt +

∫ T

0
λ T (

∂M
∂ηe

ü+
∂C
∂ηe

u̇+
∂K
∂ηe

u)dt

+Cp

∫ T

0
(1+ p f − pφ)ep f ∂ f

∂u
∂u
∂ηe

dt +
∫ T

0
λ T (M

∂ ü
∂ηe

+C
∂ u̇
∂ηe

+K
∂u
∂ηe

)dt

(9)

where Cp = 1/
∫ T

0 ep f (t)dt.
Twice integrating-by-parts the last term and rearranging yields

∂φ
∂ηe

=Cp

∫ T

0
(1+ p f − pφ)ep f ∂ f

∂ηe
dt +

∫ T

0
λ T (

∂M
∂ηe

ü+
∂C
∂ηe

u̇+
∂K
∂ηe

u)dt

+
∫ T

0
(

∂u
∂ηe

)T (Mλ̈ −Cλ̇ +Kλ +Cp(1+ p f − pφ)ep f )(
∂ f
∂u

)T dt + [(
∂u
∂ηe

)
T

(−Mλ̇ +Cλ )+(
∂ u̇
∂ηe

)
T

Mλ ]

∣∣∣∣∣
t=T

(10)

Since (10) holds for arbitrary λ (t), the Lagrangian multipliers can be chosen to eliminate the last two terms of
the right-hand side of (10)

Mλ̈ −Cλ̇ +Kλ =−Cp(1+ p f − pφ)ep f ( ∂ f
∂u )

T , t ∈ [0,T ]
λ (T ) = 0, λ̇ (T ) = 0

(11)

And the derivative ∂φ/∂ηe can now be simply given as

∂φ
∂ηe

=Cp

∫ T

0
(1+ p f − pφ)ep f ∂ f

∂ηe
dt +

∫ T

0
λ T (

∂M
∂ηe

ü+
∂C
∂ηe

u̇+
∂K
∂ηe

u)dt (12)

In order to obtain λ (t), we apply the transformation ΛΛΛ(s) = λ (T − s), then Eq. (11) becomes

MΛ̈ΛΛ(s)+CΛ̇ΛΛ(s)+KΛΛΛ(s) = P(s),s ∈ [0,T ]
ΛΛΛ(0) = 0, Λ̇ΛΛ(0) = 0

(13)

where P(s) is given as

P(s) =−Cp(1+ p f − pφ)ep f ( ∂ f
∂u )

T ∣∣∣
t=T−s

(14)

When ΛΛΛ(s) is obtained by numerical methods, λ (t) can be obtained by λ (t) = ΛΛΛ(T − t).
In particular, when the displacement response is considered, f = LT u, ∂ f/∂u = LT , ∂ f/∂ηe = 0, where L is

a unit length vector with zeros at all degrees of freedom except at the point where the displacement is considered.
When u(t),u̇(t),ü(t) and λ (t) have all been obtained, the objective function and the sensitivities can be evalu-

ated by (2) (12) and the trapezoidal summation[7]

∫ T

0
h(t)dt ≈

Ns

∑
n=0

h(tn)wn (15)

where Ns is the number of steps used to discrete the time domain, tn are time points and the weights are

2w0 = w1 = · · ·= wNs−1 = 2wNs = T/Ns (16)

6. Numerical Examples
This section presents two numerical examples which minimize the maximum displacement of the loading point
of the structure. In both examples, the International System of Units(SI) is adopted and Young’s modulus E0 =
2.0E11, Poisson’s ration ν = 0.3 and structural density ρ0 = 7800 for fully solid material is assumed. The Rayleigh
damping C = αrM+βrK is assumed and the coefficients αr and βr are considered to be design-independent and
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are chosen as αr = 10 and βr = 10−5. The sensitivity filter[8] is employed to avoid the checkerboards and mesh-
dependencies phenomena. The radius of the sensitivity filter is set to be three times the size of the elements used
to discrete the design domain. The standard settings are used for the MMA optimizer[9]. The Newmark method is
used to solve the dynamics equilibrium equation. The value of the parameter in the functional is set to be 5/ fmax,
where fmax is the maximum value of the displacement during the loading phase. For comparison, a corresponding
static design problem is also set up for each example, where the magnitude of the static load is the same as the
maximum value of the dynamic load over loading phase.
6.1. Cantilever Beam under Sinusoidal Loading
This example uses a cantilever beam design problem as shown in Fig. 1(a) to demonstrate the effectiveness of the
proposed method. The design domain is a 8×4 rectangular area with thickness 0.01. A dynamic load is vertically
applied at the bottom right of the structure. The prescribed volume fraction of material is set to 0.5. The dynamic
loading is assumed as the sinusoidal function, and two different integration time T = 0.02,0.2 are considered.

(a) Design domain and boundary condition (b) Static design

1E3

0
t

F

T

(c) Sinusoidal Load

Figure 1: Topology optimization problem of cantilever beam under sinusoidal loading

In order to solve the topology optimization problem, the design domain is discretized by square bilinear plane
stress elements whose size is 0.05. The corresponding static design is shown in Fig. 1(b). The optimal designs
under dynamic loading are shown in Fig. 2. They clearly show that the change rate of the dynamic load have great
influence on the design result. When the load changes slowly, the dynamic design is similar to the static design.
When the load changes rapidly, the dynamic design is obviously different from its static counterpart. The data listed
in Table 1 show that, the dynamic design is better than the static design when the time-dependent characteristic of
the load and the inertia effect are considered.

(a) T = 0.02 (b) T = 0.2

Figure 2: Topology optimization results of cantilever beam under sinusoidal loading
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Table 1: Maximum displacement of the design for cantilever beam under sinusoidal loading
Integration time Dynamic design Static design

T = 0.02 4.37e−5 5.35e−5
T = 0.2 3.72e−5 3.73e−5

6.2. Clamped Beam under Cosine Loading

The topology optimization problem is shown in Fig. 3(a). The design domain is a 12×2 clamped rectangular
area with thickness 0.01. A dynamic load is vertically applied at the centerline of the bottom of the structure. The
prescribed volume fraction of material is set to 0.4. The dynamic loading is assumed as the cosine function, and
four different integration time T = 0.02,0.05,0.1 and 2.0 are considered.

(a) Design domain and boundary condition (b) Static design

1E3

0
t

F

−1E3

T

(c) Cosine Load

Figure 3: Topology optimization problem of clamped beam under cosine loading

In order to solve the topology optimization problem, the design domain is discretized by square bilinear plane
stress elements whose size is 0.05. The corresponding static design is shown in Fig. 3(b). The optimal designs
under dynamic loading are shown in Fig. 4. They clearly show that the change rate of the dynamic load have great
influence on the design result. When the load changes slowly, the dynamic design is similar to the static design.
When the load changes rapidly, the dynamic designs are obviously different from their static counterpart. The
dynamic design corresponding to different integration time are also different from each other. The data listed in
Table 2 show that, the dynamic design are better than their static counterpart when the structure subjected to the
given dynamic loading. This example again demonstrate the effectiveness of the proposed method.

(a) T = 0.02 (b) T = 0.05

(c) T = 0.1 (d) T = 0.2

Figure 4: Topology optimization results of clamped beam under cosine loading
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Table 2: Maximum displacement of the design for clamped beam under cosine loading
Integration time Dynamic design Static design

T = 0.02 2.20e-5 3.14e-5
T = 0.05 3.02e-5 4.02e-5
T = 0.1 3.39e-5 4.21e-5
T = 2.0 4.08e-5 4.25e-5
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