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1. Abstract 

The use of giant boom cranes has gained an ever-increasing popularity due to their superior handling abilities. 
Lightweight design of a giant boom structure, which is usually achieved by topology optimization, becomes 
critical in reducing the energy consumption of the whole crane. In topology optimization of giant boom structures, 
geometrically nonlinear analysis has been adopted to capture the accurate structural response. A common issue is 
that the stiffness of some members keeps decreasing during the optimization process, which is often a generator of 
some slender struts leading to buckling issue. Therefore, a stability-ensured topology optimization algorithm for 
structural design is needed to maintain sufficient stability of boom structures while reducing the weight. 

The stability performance is studied either as a constraint or as an objective in topology optimization problems 
[1]. The evolutionary structural optimization (ESO) method was extended to linear buckling problems, and a 
simple method not involving variational calculus or Lagrangian multipliers was presented for the optimum design 
of columns and frames [2]. Kemmler et al. [3] considered the lowest critical load level as an inequality constraint 
and conducted topology optimization of structures including kinematics. The design problem of maximizing the 
buckling load factor of laminated composite shell structures was investigated using the discrete material 
optimization approach [4-6]. Lindgaard and Dahl [7] investigated a range of different compliance and buckling 
objective functions for maximizing the buckling resistance of a snap-through beam structure. The gradient-based 
optimization methods have been widely applied in many stability constrained problems, but they are not 
appropriate for topology optimization problems with large number of local stability constraints due to difficulties 
in calculating the sensitivities of numerous constraints with respect to each of the design variables. 

In the presence of aforementioned drawbacks of gradient-based methods, non-gradient-based methods are put 
forward to provide a convenient way for topology optimization of geometrically nonlinear boom structures. 
Although non-gradient nature-inspired methods are not viable alternatives for the vast majority of topology 
optimization problems, they actually solve discrete topology optimization problems with surprisingly high 
efficiency [8]. For example, the Soft Kill Option (SKO) method is a heuristic topology optimization method based 
on the simulation of the biological growth rule of biological growth carriers like bones [9]. It reduces human error 
to a minimum, and even in really complex cases makes it possible for the first time to find a draft design that is 
already close to the optimum [10]. Even though sensitivity analysis is not used, the  results obtained with the SKO 
method are very similar to those by gradient-based methods using OptiStruct [11, 12]. Our previous work [13] 
extended the SKO method into topology optimization of bars structures and sets the foundation for this research. 

A couple of member buckling judgment methods for bars structures have been presented in recent years. Shen 
et al. [14] proposed a middle plastic hinge model of the member, assuming that the member is in a completely 
elastic deformation condition before buckling. Fan et al. [15] adopted the curve of axial force-relative deflection of 
the member and the energy method to judge the member buckling. To better monitor the stability of the structure, 
global stability index (GSI) and compression member stability index (MSI) are defined in this paper. The global 
stability constraint can be easily formulated by GSI, while member buckling of any compression member can be 
detected by MSI. Apart from stability, the volume and stress should also be taken into consideration in topology 
optimization of boom structures so that the topology design is close to industrial application. However, it is very 
difficult to find optimization algorithms for discrete problems that can treat multiple non-trivial constraints [8]. 
The traditional volume constraint always conflicts with global stability and stress constraints, thus the 
predetermined target volume fraction may not be achieved. Adaptive volume constraint algorithm is proposed by 
Lin and Sheu [16] so that the maximum stress in the optimal structural configuration is guaranteed to be below the 
predefined stress limit. 

The stability indices are utilized as a part of a novel Stability-Ensured Soft Kill Option (SSKO) algorithm, 
which is a heuristic topology optimization approach proposed in this work on the basis of the existing SKO method. 
The objective is to minimize the discrepancy between structural volume and predetermined target volume, while 
the global stability, member stability and stress are regarded as constraints. To demonstrate the effectiveness of the 
proposed approach, the SSKO algorithm with different scenarios is applied to topology optimization of a ring 
crane boom, and stable topologies are achieved with high efficiency and consistency. 
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3. Stability indices 
3.1. Global stability index 

For a static structure, the overall stiffness can be defined as the slope of load-displacement curve of a certain 
position at the last convergence incremental step, represented by gS . A positive gS infers a stable structure, while 

gS decreases to zero or a negative number when the structure becomes global buckling. In the process of topology 
optimization, we need to quantitatively express the global stability status for monitoring the global stability 
constraint, and the global stability index (GSI) is defined as 

( ) ( ) (0)/k k
g gGSI S S= , max0,1,...,k k=                                                          (1) 

where k is the indicator of iteration number, k=0 means the initial analysis of the structure, and kmax is the 
maximum number of iterations. GSI(k) is the global stability index in the k-th iteration, and ( )k

gS  denotes the overall 

stiffness of the structure in the k-th iteration. GSI(0) is equal to 1 if the whole structure is stable in the initial analysis. 
Similar to the overall stiffness, a positive GSI infers a stable structure, while it decreases to zero or a negative 
number when the structure becomes global buckling. 
 
3.2. Compression member stability index 

Fig.1 shows the deformation of a compression member in the global coordinate system O-XYZ. AB  is the 
initial configuration before deformation and A Bʹ′ ʹ′  is the configuration after deformation. All the non-end loads 
have been converted to the end loads, such as gravity load and wind load. Two local coordinate systems, the 
member coordinate system -A xyzʹ′  and the member end coordinate system - o o oB x y zʹ′ , are defined as follows. In 

the member coordinate system: the direction of vector A Bʹ′ ʹ′
uuuur

 (pointing from Aʹ′ to Bʹ′ ) is defined as x+  direction, 
y+  direction is parallel to plane XY  and its angle with +Y  is smaller than or equal to 90°; in the case when axial 
x  is parallel to axial Z , axial y  is defined to be parallel to axial Y . In the member end coordinate system, the 

outward tangential direction at Bʹ′  is defined as + ox  direction, oy+  direction is parallel to plane XY  and its angle 
with +Y  is smaller than or equal to 90°; similarly to the member coordinate system, when axial ox  is parallel to 
axial Z , axial oy  is defined to be parallel to axial Y . Both local coordinate systems are right-handed and depend 
on the configuration after deformation. The loading condition at the end Bʹ′  is expressed in the member end 
coordinate system (Fig.1). They are three force components 

ox
F ,

oy
F ,

oz
F  and three bending moments 

ox
M ,

oy
M ,

oz
M . 

 

 
 

Figure 1: Deformation of a compression member 
 

The axial vector of member AB  after deformation is 

ABʹ′ ʹ′=a                                                                              (2) 
The three force components 

ox
F ,

oy
F ,

oz
F  are projected onto the axial vector, and the projection sum is the 

axial force of member AB  after deformation 
( ) /aF = + + ⋅

o o ox y zF F F a a                                                                (3) 
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where  denotes the module of a vector, similarly hereinafter; a positive value of aF  means tension while a 
negative value means compression. 

The relative axial displacement between the ends of member AB  is written as 
u ABΔ = −a                                                                              (4) 

A positive value of uΔ  means elongation while a negative value means shortening. 
For any member AB  in a frame structure, its axial stiffness at time t  can be defined as 

( ) /( )t t t t t t t
a a aS F F u u−Δ −Δ= − Δ − Δ                                                          (5) 

Here t t−Δ  is the time with a tiny time period tΔ  difference prior to time t . 
According to the definition of stability of compression members, when the axial compression force begins to 

decline and the absolute value of the relative axial displacement is still increasing, this member is buckling. In 
other words, a compression member is buckling when its t aS  value changes from a positive number to a negative 
number. Hence, capturing the changes of axial stiffness can help judge whether a compression member is unstable. 
This judgment method is applicable to the elastic or elastoplastic, limit point, flexural or flexural-torsional 
buckling of compression member considering only the end forces. 

In the optimization process, we can quantitatively evaluate the compression member stability status by thee 
MSI defined as 

( ) ( ) (0)
( ) ( ) ( )/k k
j a j a jMSI S S= , max0,1,...,k k=                                                     (6) 

where ( )
( )
k
jMSI  is the stability index of member j in the k-th iteration. ( )

( )
k
a jS  denotes the axial stiffness of member j 

in the k-th iteration, which is determined in Eq. (5). is equal to 1 if member j is stable in the initial analysis. When 
( )
( )
k
jMSI  decreases to zero or a negative value, the compression member j buckles. 

 
4. Optimization procedure 
4.1. Formulation of the optimization problem 

The stability-ensured topology optimization of boom structures with volume and stress considerations can be 
formulated as follows: 

find        T
1 2( , , , )nE E E=E  

min        
max target

1
( / )

n

oj j o
j
v E E V vf

=

− ×∑   ( 1,2, , )j n=  

s.t.                  0GSI >                                                                                                (7) 
( ) 0>jMSI             ( 1,2, , )j n=  

[ ]maxσ σ≤  

min maxjE E E≤ ≤     ( 1,2, , )j n=  

Where jE is the Young's modulus of member j ( 1,2, , )j n= , ojv is the initial volume of member j ,
max

1
( / )

n

oj j
j
v E E

=
∑  

denotes the total volume of design domain, oV  is the total volume of initial structure in a design domain and 
targetvf is 

the predetermined target volume fraction. GSI  is the global stability index defined in Eq. (1), maxσ is the 
maximum stress, and [ ]σ  is the allowable stress. minE and maxE are the lower and upper bounds of Young's modulus, 
respectively. 
 
4.2. SKO method for bars structures 

The SKO method has been used to obtain the optimal design of linear bars structures [13]. Using this method, 
once the maximum stress and reference stress of bars are obtained after finite element analysis, the temperature 
index of each bar is calculated by Eqs.(8)-(10) [9, 13]. The temperature index has no definite physical meaning, 
which is an intermediate variable bridging the stress to the Young's modulus. 

( ) ( 1) ( ) ( 1) ( )
( )( )k k k k k

j j j j ref jT T s σ σ− −= − −                                                                (8) 

( 1)

( 1) ( 1)

( 1)

100 100
0 0

otherwise

k
j

k k
j j

k
j

T
T T

T

−

− −

−

⎧ ≥
⎪

= ≤⎨
⎪
⎩

                                                                    (9) 
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( ) ( )
0 ( )/k k

j ref js T σ=                                                                             (10) 

where ( -1)k
jσ is the maximum stress of member j in the (k-1)-th iteration, and ( )

( )
k
ref jσ is the reference stress of 

member j in the k-th iteration. The reference stress equals either the average stress of all bars or the average stress 
of member j and its adjacent bars in a design domain. In general, the optimization process convergences faster by 
using the latter one as the reference stress, which is thus applied in this paper. ( )k

js is the step factor of member j in 

the k-th iteration. ( )k
jT denotes the temperature index of member j in the k-th iteration, which has a linear 

relationship with the Young's modulus. (0) 0jT =  and 0 100T = . According to Eqs.(8)-(10), if ( -1)k
jσ is higher than 

( )
( )

k
ref jσ , the temperature index of member j will be reduced and its Young's modulus will be increased; otherwise, 

the Young's modulus of member j will be reduced. When ( 1) 0k
jT
− ≤ , maxE E= is the real material Young's modulus. 

When ( 1) 100k
jT
− ≥ , min max= = /1000E E E  [9]. 

 
4.3. Proposed Stability-Ensured Soft Kill Option (SSKO) algorithm 

This paper proposes a novel SSKO algorithm based on the SKO method for bars structures and stability indices. 
The SSKO algorithm is divided into three stages: initial analysis, preliminary optimization, and stability-ensured 
optimization, shown in Fig.2. Superior to other algorithms, SSKO detects the buckling chord members through 
MSI and subsequently freezes them and their relative web members during the stability-ensured optimization stage. 
The relative bracing system [17] is the most common bracing system applied in large scale three-dimensional 
frame structures, especially in boom structures. Fig.3 shows the initial structure of a typical standard section of 
boom structures, which is composed of chord members and web members. The exterior web members are located 
at the six outer surfaces of a standard section, and the other web members are interior web members. In order to 
reinforce the buckling chord members identified though MSI, we present a technique of “freeze”, which means 
that Young's modulus is set to the true value of the real material and cannot be modified. When a chord member is 
judged to be buckling we will first freeze itself and its exterior relative members (Fig.4(a)), then in the following 
iteration if the chord member is judged to be buckling again we will freeze its interior relative members (Fig.4(b)). 
A growth factor of the reference stress is introduced as a step function with respect to the iteration number to 
optimize the structure to have a volume close to the predefined target. All details will be explained in the 
following. 
 

    (2) Finite element analysis (FEA)
          and calculate      ,

   (1) Initialization: set all            ,           ,
                                           and generate
         the initial finite element model

STOP

(6)While j ≤ n ?

(8) If chord j is a compression 
member AND if it is buckling

(10) If member
 j is frozen

(12) Update      and       ,
 then  j=j+1

Y

N
N

N

N N

Y

Y

(0)
gS

(0)
( )a jS

( )
max

k
jE E=

0jFr = max( 1,2, ; 1,2, )j n k k= =L L

(3) Modify                               of the  
structure by using the SKO Eqs.(8)-(10)

    (4) FEA, then calculate      ,       ,
                                   and

(1)
gS

(1)
( )a jS

( 1,2, )j n= L

( 1,2, )j n= L(1)
( )jMSI

(1)GSI

(5) Termination criteria are met ?

(1)VΔ

 (13) FEA, then calculate
           ,        ,        ,     
                         and         ;
       set

( )k
gS

( )
( )
k
a jS ( )

( )
k
jMSI( )kGSI
( )kVΔ

(7) If member j is 
a chord member

( )k
jE

Y

Y

(9) Freeze chord j and its relative web 
members in order of precedence

1k k= +

Calculate         , ( )
( )

k
ref jσ ( ) ( 1)k kλ λ −=

             ?

Modify      ,      

NY
( 1)kV ε−Δ ≤

( )kλ ( )
( )

k
ref jσ

Modify      by using
the SKO Eqs.(8)-(10)

( )k
jE

(11) 1j =

( )k
j ojv v=

(1) (1), ( 1,2, )j jE v j n= L

( )k
jv

( 1,2, )j n= L

 
 

Figure 2: Flow chart of the SSKO algorithm 
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Columns
(Chord members)

Exterior bracing
(Exterior web members)

Interior bracing
(Interior web members)

                                  
                                                                                                                                                     (a)                                             (b) 

Figure 3: Initial structrue of a standard section               Figure 4: The relative members of a chord member 
 

In the initial analysis stage (STEPs 1-2), this algorithm defines an initial finite element model and conducts 
geometrically nonlinear analysis, then calculates the overall stiffness (0)

gS  and the axial stiffness of each 

compression member (Eq. (5)). 0jFr =  means that member j is not frozen, and 1jFr =  means member j is frozen. 

In the preliminary optimization stage (STEPs 3-4), the Young's modulus of each member is modified by the SKO 
Eqs. (8)-(10) directly, then the finite element analysis of the structure is carried out. Afterwards, the overall 
stiffness, the axial stiffness of compression members, GSI, MSI and the total volume change are calculated as the 
references of subsequent iterations. The stability-ensured optimization stage (STEPs 5-13) is the key part. 

STEP 5: If any of the following criteria (Eqs. (11)-(14)) is met, stop the procedure. Otherwise, move to STEP 6. 
( 1) ( 1) ( 2)k k kV V V ε− − −Δ = − ≤  and ( 2) ( 2) ( 3)k k kV V V ε− − −Δ = − ≤                                    (11) 

( 1)
target

kvf vf− ≤  and ( 1)kV ε−Δ ≤                                                             (12) 

[ ]( 1)
max
kσ σ− ≥                                                                             (13) 

max k k>                                                                              (14) 
In Eq. (11), the tolerance of total volume change ε  is a sufficently small positive real number. The total volume 
change among the last three iterations should be lower than ε . The volume fraction in the last iteration reaches the 
target volume fraction and the total volume change in the last iteration is lower than the tolerance, as shown in Eq. 
(12). Generally, the total volume change is required to be equal to zero in order to get a topology with the steady 
distribution of Young's modulus. The maximum stress in the last iteration is greater than the allowable stress (Eq. 
(13)). The maximum iteration number maxk  is a sufficently large positive integer. If the iteration number k becomes 
larger than maxk , the procedure terminates. 

STEP 6-STEP12: Check all members in a design domain one by one, and update the Young's modulus of each 
member. STEP 8 is to judge whether chord j is buckling by Eq. (6), and STEP 9 is to freeze chord j and its relative 
web members. If member j is not frozen, its Young's modulus can be modified by the SKO Eqs. (8)-(10). The 
reference stress ( )

( )
k
ref jσ in the SKO equations should be raised by Eqs. (15)-(17) to make the structure to be close to 

the target volume fraction if the total volume change in the last iteration is lower than ε . 
( ) ( ) ( )
( ) ( )

k k k
ref j ref jσ σ λ=                                                                     (15) 
( ) ( 1) ( )k k kλ λ λ−= +Δ                                                                    (16) 

( 1)
( )

max
target

1
1

k
k vf

vf
λ λ

−−
Δ = Δ

−
                                                                 (17) 

Here, ( )kλ denotes the growth factor of the reference stress, and (0) 1λ = . ( )kλΔ  means the increment of the growth 
fact, and maxλΔ  is the maximum increment of the growth fact in each iteration, such as max 0.15λΔ = . When the 
volume fraction of the structure becomes closer to the target volume fraction, the increment of the growth factor 
gets larger. 

The modified reference stress may be larger than the allowable stress sometimes, so this procedure records the 
original reference stress ( )

( )
origin k
ref ref jσ σ= , then adjusts the reference stress and the growth factor by Eqs. (18)-(19). 

[ ]( )
( )

k
ref jσ σ=                                                                              (18) 

[ ]( ) /k origin
refλ σ σ=                                                                         (19) 

STEP 13: Execute FEA, then calculate ( )k
gS , ( )

( )
k
a jS , ( )kGSI , ( )

( )
k
jMSI ( 1,2, )j n=  and ( )kVΔ . Reset 1j = , go 

back to STEP 5. 
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5. An illustrative example 
A 45.5m-long combined boom of 2500-tonne ring crane (see Fig.5) is studied as an illustrative example. All 

the twelve standard sections are replaced by typical standard sections (Fig.3 and Fig.6). Considering the symmetry 
of the combined boom, only half structure is analyzed. Fig.7 shows the finite element model of the half-boom. The 
left part of Fig.7 is the view of the luffing plane (XY plane), and the right part is the view of the swing plane (YZ 
plane). The range of the boom is 10m (“range” refers to the horizontal distance between the center of boom foot 
pins and boom tip pins), a lifting load FQ=14320000N is applied at the lifting point, and a +X direction wind load 
FW=26778N is uniformly distributed on end points of chord members of standard sections. 

To improve the calculation efficiency, the plate structures at the ends of the boom are simplified as rigid bars, 
which belong to non-design domain. At the top of boom, only the Z-axis rotational and Y-axis translational 
degrees of freedom are released. At the bottom of boom, only the Z-axis rotational degree of freedom is released. 
At the symmetry plane of the whole combined boom, the Z-axis translational degree of freedom is constrained. 
 

                                  
 
Figure 5: A 45.5m boom structure    Figure 6: Dimensions of standard section    Figure 7: FE model of half-boom 
 

Three scenarios are applied in the topology optimization of this boom structure, and their performances are 
listed in Table 2. We make 

maxλΔ  
equal a large number in scenario 2-1, intentionally to get a fast convergence 

speed, but it turns out not to be the case. Fig.8 is the optimization results using scenario 2-1 (The layout of Fig.8(a) 
and Fig.9 is the same as Fig.7). It is obvious that this topology is not the optimal solution because the stress of most 
retained members is lower than 380MPa and the maximum stress which is above 500MPa happens at a local 
connection area (see Fig.8(a)). Fig.8(b) shows that the maximum stress begins to fluctuate divergently from the 
40th iteration and goes beyond the allowable stress in the 141st iteration resulting in termination of optimization 
process. The GSI decreases to a minimum of 0.5465 in the 139th iteration but the structure still keeps in a stable 
state. The volume fraction also begins to fluctuate divergently from the 40th iteration as a result of the growth 
factor of the reference stress λ  exceeding 2.5. When the growth factor becomes large, the reference stress gets an 
enormous growth at each step that leads to a sharp decrease of the volume fraction (Eq. (8)). It means that a 
considerable portion of material is removed which usually causes the occurrence of stress concentration (see 
Fig.8(a)). The maximum stresses of many members become higher than the reference stress in the subsequent 
iterations, so the volume fraction increases after its significant decrease. It has also been demonstrated by other 
case studies we conducted that under most circumstances λ  should not be larger than 2.5 in order to ensure the 
stability of optimization. 
 

Table 1: The performances of SSKO algorithm in boom structure problem 
 

Scenario targetvf  maxλΔ  [ ]σ  GSI Volume fraction Max. stress No. of Iterations 
2-1 0.5 0.90 500 0.8969 0.8163 571.14 141 
2-2 0.5 0.30 500 0.9860 0.7823 173.68 84 
2-3 0.5 0.15 500 0.9860 0.7823 173.68 129 

  



 
 

7 

      
(a)                                                                              (b) 

Figure 8:  Optimization results by scenario 2-1 (a) von Mises stress (b) Convergence history 
 
The maximum increment of the growth factor is reduced in scenarios 2-2 and 2-3 to make the optimization process 
more stable. The optimization results (see Fig.9) are the same by either scenario 2-2 or 2-3, which justifies the 
proposed SSKO algorithm. Fig.10 shows the convergence histories of the SSKO algorithm in boom structure 
problem by strategies 2-2 and 2-3 respectively. The procedures converge after several step growths of λ , and the 
scenario 2-2 has a higher optimization efficiency than the scenario 2-3. The anti-buckling mechanism works well 
since the GSI keeps at around 1. The volume fraction decreases to 0.7823 and the maximum stress becomes 
173.68MPa eventually. 
 

  
(a)                                                                        (b) 

Figure 9:  Optimization results by either scenario 2-2 or 2-3 (a) von Mises stress (b) displacement 
 

  
(a)                                                                                        (b) 

Figure 10:  Convergence histories of SSKO algorithm by scenarios (a)2-2 (b)2-3, respectively 
 

The SSKO algorithm reduces the total volume significantly and gives a stable optimal design with the 
maximum stress being lower than the predetermined stress limit as long as we select an appropriate maximum 
increment of the growth factor. This example also demonstrates the high efficiency since it convergences to the 
same result through only a few dozens of iterations. 
 
6. Conclusions 

This paper presents a Stability-Ensured Soft Kill Option (SSKO) algorithm for structural topology design of 
geometrically nonlinear boom structures including stress constraints. This algorithm is developed for bars 
structures with large number of constraints by employing the proposed global stability index (GSI), compression 
member stability index (MSI) and the knowledge of bracing systems for resisting buckling of columns. The MSI 
can be used to distinguish the buckling of almost any kinds of compression members in boom structures. The 
results of the boom structure problem indicates that an appropriate maximum increment of the growth factor plays 
a crucial role in converging to the optimal design. The consistent optimization results using different scenarios 
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demonstrate the applicability of the SSKO algorithm. The proposed algorithm can be applied to optimize other 
boom structures with different layout of web members as long as we develop a proper freezing strategy for the 
specific initial structure. 
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