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1. Abstract
Numerical and analytical methods of analysis and optimization of elastic plastic plates are developed. The cases of
linear and non-linear yield surfaces are studied. Necessary optimality conditions are derived with the aid of varia-
tional methods. The obtained system of equations is solved numerically. The effectivity of the design established
is assessed in the cases of one- and multi-stepped plates made of Tresca or Mises materials.
2. Keywords: plate, optimization, elastic plastic material, minimum weight.

3. Introduction
Evidently, there exists the need for new computer-aided techniques for calculation and optimization of elastic plas-
tic plates. Optimization of axisymmetric plates operating in the range of elastic plastic deformations was studied
by Lellep and Polikarpus [2, 3] in the case of the material obeying Tresca’s yield condition and by Lellep and
Vlassov [4, 5] in the case of von Mises material.
New analytical and numerical techniques of optimization of axisymmetric plates are developed in the present pa-
per. The material of plates is an ideal elastic plastic material obeying a linear or non-linear yield condition and the
associated flow law.
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Figure 1: Stepped plate.

4. The cost function
Circular and annular plates with radii R (outer radius) and a (inner one) will be considered. Let us assume that
an axisymmetric plate is subjected to the axisymmetric transverse pressure of intensity p = p(r), where r is the
current radius. The analysis will be carried out under the assumption that the hypotheses of Kirchhoff hold good
in the regimes of elastic and plastic deformations. The plates with sandwich cross section will be considered. A
sandwich plate is a structure which consists of two carrying layers of thickness h and of a layer of a core material
between the rims. Let the thickness of carrying layers be piecewise constant, e. g.

h = h j, r ∈ S j (1)

where S j = (a j,a j+1); j = 0, . . . ,n.
Evidently, the plate can be subdivided into elastic and plastic regions in the case of a sandwich plate. Let us denote
the elastic region by Se and the plastic region by Sp. In principle, both of these may consist of several regions Se j
and Sp j, respectively. Here Se j = S j if the region S j is a pure elastic one, e. g. if j ∈ Ke. Similarily, Sp j = S j,
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Figure 2: Yield conditions.

if j ∈ Kp. These intervals where both, the elastic and plastic deformations take place are denoted by Sep whereas
Sep = S j for j ∈ Kep. Evidently,

Ke∪Kp∪Kep = {0,1, . . . ,n}. (2)

The thickness of the rim is much smaller than the thickness of the core material H. Note that the quantities
h0, h j and a j ( j = 1, . . . ,n) are preliminarily unknown constant design parameters when solving a problem of
optimization.
As regards the formulation of an optimization problem, one can find in literature a lot of different particular
problems (see Lellep [1]).
In the general case the cost function can be presented as

J =
n

∑
j=0

(
G j +

∫
S j

Fjdr
)

(3)

where G j and Fj are given functions of design parameters. For the sake of simplicity it is assumed that the functions
Fj and G j are continuous and continuously differentiable with respect to their variables.
The optimal design to be established must satisfy the constraints imposed on the stress-strain state of the plate. Let
the additional constraints be presented as integral constraints

n

∑
j=0

∫
S j

F0
i jdr ≤ Ki (4)

for i = 1, . . . ,k. The functions F0
i j in Eq. (4) are given continuous functions of design parameters and Ki – given

constants.
In particular cases the optimization problem consists in the determination of design parameters so that the cost

function (total weight, for instance) attains its minimum value and the constraints imposed on the stress strain state
of the plate are satisfied. For instance, the cost of carrying layers can be presented in the form

V =
n

∑
j=0

h j(a2
j+1−a2

j) (5)

where a0 = a and an+1 = R.

5. Basic equations
Making use of the classical plate theory the principal moments M1, M2 and the shear force Q are connected as

d
dr

(rM1)−M2− rQ = 0,

d
dr

(rQ)+Pr = 0.
(6)
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Equations (6) hold good equally in elastic and plastic regions of a plate.
In an elastic region of the plate the Hooke’s law holds good. According to the generalized Hooke’s law

M1 = D j(κ1 +νκ2),

M2 = D j(κ2 +νκ1)
(7)

where ν is the Poisson ratio. In Eq. (7) and henceforth

D j =
EH2h j

2(1−ν2)
(8)

where E stands for the Young modulus. Here κ1 and κ2 stand for the curvatures (W is the transverse deflection)

κ1 =−
d2W
dr2 ,

κ2 =−
1
r

dW
dr

.

(9)

It can be shown that the system of governing equations in an elastic region for r ∈ Se j can be presented as (see
Lellep, Vlassov [4, 5])

dW
dr

= Z,

dZ
dr

=−M1

D j
− νZ

r
,

dM1

dr
=−

(1−ν2)D jZ
r2 − (1−ν)M1

r
+Q

(10)

whereas the following equation

M2−νM1 +
D j(1−ν2)Z

r
= 0 (11)

must be satisfied for each r ∈ Se j. Note that here j ∈ Ke and j ∈ Kep and Z can be treated as an auxiliary variable.
In plastic regions of the plate the stress profile lies on a yield surface Φ = 0. It is assumed that the material of the
plate obeys a yield condition

Φ j(M1,M2,M0)≤ 0 (12)

for r ∈ Sp j, j ∈ Kp.
It can be shown that in the case of a von Mises material one can take

Φ j = M2
1 −M1M2 +M2

2 −M2
0 j. (13)

In the case of a Tresca plate one has to check the suitability of each side of the hexagon ABCDEF (Fig. 2)
separately. However, if it is clear previously that, for instance, M1 ≥ 0, M2 ≥ 0 for each r ∈ Sp one can concentrate
at the flow regime BC (AB is not suitable for most cases). Thus now

Φ j = M2−M0 j (14)

for r ∈ Sp j, j ∈ Kp. The associated flow law states that

κ1 =
λ∂Φ j

∂M1
,

κ2 =
λ∂Φ j

∂M2

(15)

for r ∈ Sp j, j ∈ Kp. Here λ is a non-negative scalar multiplier. Thus combining Eq. (12), (15) with Eq. (6) one has

dW
dr

= Z,

dZ
dr

=
Z ∂Φ j

∂M1

r ∂Φ j
∂M2

,

dM1

dr
=

M2

r
− M1

r
+Q,

(16)
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Figure 3: Transverse deflection.

Figure 4: Bending moment.

where the quantity Q can be handled as a given function. Indeed it follows from the equilibrium equations that

Q =−1
r

∫ r

a
P(r)rdr. (17)

6. Necessary optimality conditions
In order to derive optimality conditions let us introduce an extended functional

J∗ =
n

∑
j=0

G j + ∑
j∈Ke j

∫
Se j

{
ψ1

(
dW
dr
−Z
)
+ψ2

(
dW
dr

+
M1

D j
+

νZ
r

)
+ψ3

(
dM1

dr
+(1−ν

2)D j +
(1−ν)M1

r
−Q

)
+ν0 j

(
M2 +

D j(1−ν2)Z
r

−νM1

)}
dr

+ ∑
j∈Kp j

∫
Sp j

ψ1

(
dW
dr
−Z
)
+ψ2

dZ
dr
−

Z ∂Φ j
∂M1

r ∂Φ j
∂M2

+ψ3

(
dM1

dr
− M2

r
+

M1

r
−Q

)dr

+
n

∑
j=0

∫ a j+1

a j

[φ0 j(φ j +Θ
2
j)+Fi +νiF0

i j]dr

(18)

where Θ j are new control functions and ψ1−ψ3 – the adjoint variables. The boundary conditions are not presented
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Figure 5: Circumferential moment.

in Eq. (18); these must be taken into account when solving the equation ∆J∗ = 0. Calculating the total variation
of Eq. (18) and equalizing it to zero leads to the set of optimality conditions. The procedure of the variation of
Eq. (18) is similar to that performed in [4, 5].

7. Numerical results
In the case of a non-linear materials the problem is solved numerically making use of finite elements and the
method of wavelets. The results of calculations are presented in Fig. 3–5 in the case when the number of steps
n = 1.
The distributions of transverse deflections, radial and circumferential bending moments are presented in Fig. 3, 4
and Fig. 5, respectively. Different curves in Fig. 3–5 correspond to the plates made of a Hill material and subjected
to the uniform transverse pressure. Here the labels of curves correspond to p = 3.15; p = 3.25; p = 3.45 and
p = 3.65, respectively, and

p =
PM00

R2 , αi =
ai

R
, mi =

Mi

M00
. (19)

The results depicted in Fig. 3–5 correspond to the case when h1 = 0.6h0; a1 = 0.35R. The region of plastic defor-
mations reaches to r = 0.304 for p = 3.15 and to r = 0.385 for p = 3.65.
The distributions of M1 and M2 are depicted in Fig. 6–7 in the case of the Tresca material. It can be seen from Fig. 6,
7 that the hoop moment is discontinuous and the radial moment is a continuous non-smooth, as might be expected.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
1

r

p = 10
p = 20
p = 30
p = 40
p = 50
p = 60
p = 70
p = 80

Figure 6: Bending moment.
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Figure 7: Circumferential moment.

8. Concluding remarks
Methods of optimal design of axisymmetric plates are developed under the assumption that the plates are operating
in the elastic plastic stage of deflection. Necessary conditions of optimality are derived making use of variational
methods. Numerical results are obtained for plates obeying the Mises or Tsai-Wu criterion with the aid of Haar
wavelets. Calculations carried out showed remarkable material saving can be achieved when using the design of
stepped plate.
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