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1. Abstract 
This paper presents multi-objective topology optimization of composite structures manufactured by resin transfer 
molding. The problem is formulated as minimizing both structural compliance and resin filling time. The empirical 
model of resin filling process is constructed by mining the results of numerical process simulations of massively 
sampled structural topologies within a fixed bounding box, using Random Forest statistical learning. Thanks to the 
abstract topology features inspired by underlying physics of the filling process, the resulting process model is far 
more generalizable than the traditional surrogate models based on, e.g., bitmap and local feature representation, 
with no penalty in computation time. In particular, the model can reasonably be applied to the situations with the 
different inlet gate locations and initial bounding boxes from the training samples, while the traditional surrogate 
models completely fail in such situations. 
Three case studies for composite structure topology optimization are discussed with different inlet gate locations 
and initial bounding boxes in order to demonstrate the robustness of the developed process model. The 
multi-objective topology optimization problem is solved by the Kriging-interpolated level-set approach and 
multi-objective genetic algorithm (MOGA). The resulting Pareto frontiers offer opportunities to select the designs 
with little sacrifice in structure performance, yet dramatically reduced resin filling time as compared to the 
structurally optimized design. 
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3. Introduction 
The gap between the output of computer-based structure topology optimization and the final component ready for 
manufacturing is still considered as a barrier for further adoption of topology optimization in industries. Practically, 
some modifications are applied to the component generated by topology optimization to improve its 
manufacturability, which usually requires empirical expert knowledge. Such practice, however, is likely to yield 
suboptimal solutions with respect to either structure performance (e.g. stiffness) or component manufacturability, 
due to the nonlinearity of both responses to the change of component topologies. To resolve this problem, the 
process simulation (e.g. sheet metal stamping [1], injection molding [2] and casting [3]) can be incorporated to 
topology optimization as a tool of evaluating component manufacturability during optimization. Since the finite 
element based process simulation is usually computationally expensive, surrogate models of sampled process 
simulations are usually used as a means for approximate evaluation of component manufacturability. Nevertheless, 
the lack of generalizability of the traditional surrogate models to samples not similar to the training set has severely 
limited their applicability in topology optimization, where component geometries can undergo dramatic changes 
during optimization process. To overcome this limitation, this paper presents the application of a new class of 
surrogate models of manufacturing processes for evaluating component manufacturability during topology 
optimization. The model for resin filling process in resin transfer molding of composites is built using the 
data-driven manufacturing constraint modeling (MCM) [4] we previously developed. The model is trained with 
resin filling simulations of massive sampled topologies and statistical learning regression model. Thanks to the 
abstract topology features inspired by underlying physics of the filling process, the resulting process model is far 
more generalizable than the traditional surrogate models. 
Resin transfer molding (RTM) is a closed mold manufacturing process of fiber reinforced composite materials. 
Due to the requirement of lightweight structures in automotive and aerospace industries, it has become a promising 
economic solution for components made of polymer composite materials. The mass production of BMW i3 (2013) 
whose body structures are made of carbon fiber composite with RTM process, is an example of its recent 
application in automotive industry. The design of RTM component is currently a challenge due to the lack of 
empirical experience and design for manufacturing (DFM) guidelines which are available to the components made 
by traditional manufacturing processes such as sheet metal stamping. The potential manufacturability issues of 
RTM process could be preform deformation due to compaction [5] and draping [6], racetracking [7], void 
formation [8], etc. In the early exploration of composite structure topologies, the resin filling time is a critical 
manufacturability concern which affects the product lead time, especially for mass production automotive 
applications. Figure 1 shows an example of two composite structures with the identical volume, material properties 
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and process parameters, but a large difference in resin filling time, due to the topology difference.,  

 
The rest of the paper is organized as following. Section 4 reviewed the related works on manufacturing constraint 
in computer-based structure optimization. Section 5 presented the data-driven predictive modeling of composite 
resin filling time. Section 6 discussed the result of three topology optimization case studies with the trained process 
model. Finally, section 7 summarized the current study and opportunities for future works. 
 
4. Related Works 
In order to improve the manufacturability of components generated by the computer-based structure optimization, 
many types of manufacturing constraints have been incorporated into the structure optimization loop. Several 
researchers proposed the algorithms to control minimum member size [9-11] and maximum length scale [12] in 
topology optimization. As a result, the designer gained control over member sizes which could influence the 
component manufacturability and cost. As for manufacturing constraints tailored for specific manufacturing 
processes, Harzheim et al. [13] developed the program TopShape to enforce casting manufacturing constraint for 
structure topology optimization. Zhou et al. [14] added the empirical sheet metal stamping manufacturing cost 
objective to the multi-component topology optimization. Nadir et al. [15] considered the manufacturing cost 
model of abrasive water jet process for the shape optimization. Zuo et al. [16] added the machining constraints to 
generate manufacturable topologies. Edke et al. [17] incorporated virtual machining simulation into the shape 
optimization of heavy load carrying components to ensure the manufacturability of the structurally optimized 
result. 
As for the composite structure, Boccard et al. [18] proposed a semi-analytic model to determine the resin filling 
time of the preforms with isotropic permeability. In addition, Park et al. [19] applied the model to the composite 
structure optimization problem with both mechanical performance and manufacturing cost objectives. Kaufmann 
et al. [20] and Lee et al. [21] used the software SEER-MFG to estimate the manufacturing cost of resin transfer 
molding component and added it to the composite structure design process. Gantois et al. [22] combined the 
manufacturing cost with the initial multidisciplinary design optimization framework of minimum weight and 
maximum aerodynamic efficiency for the civil aircraft application. 
However, the manufacturing process models used in these works are usually overly-simplified and tend to be 
conservative, in order to keep the model generalizability. We resolve it by using more accurate process simulations 
to evaluate structure manufacturability, and data driven predictive models to generalize the knowledge. 
 
5. Data-Driven Composite Resin Filling Time Predictive Modeling 
This section briefly summarizes the composite resin filling time predictive modeling process. The model is trained 
with massive process simulations and data mining of topology abstract feature representation inspired by 
underlying physics of the filling process. For detailed explanation, please refer to our previous work on predictive 
modeling of resin filling time of composite molding process [23]. 
 
5.1 Data Generation 
Within the initial 2𝑚×1𝑚 bounding box (see Figure 2), 50000 random topologies are generated by Kriging 
level-set method [24] and labeled by their resin filling time, simulated by PAM-RTM (ESI Group). The material 
fraction volume, the fraction of the volume of structural materials to that of the whole bounding box is set as  0.7. 
The preform permeability is assumed isotropic and set as  1.0𝑒 − 9  𝑚- , the thickness as  1.0𝑒 − 3  𝑚 and the 
porosity as  0.5. The inlet pressure is  1.0𝑒5  𝑃𝑎. As a result, the training set 𝐷2 can be summarized as Eq.(1) below: 
 

𝐷2 =    𝒙𝒊, 𝑦8|  𝑖 = 1, 2, … , 𝑛 , (1) 
where: 

Figure 1 Examples of the non-efficient filling topology (a: 3780s) and the efficient filling topology (b: 1570s). 

(b) Filling time: 3780s (a) Filling time: 1570s 

Inlet gate location 
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𝒙𝒊: binary bitmap representation of topology  𝑖; 
𝑥8> = 0 if void and 𝑥8> = 1 if filled (𝑗: number of element in the bounding box); 
yA: resin filling time simulation result of topology  𝑖; 
𝑛: number of training samples (= 50000 in this case). 

 
5.2 Knowledge-Inspired Feature Representation 
The performance of the predictive model depends on the quality of input features. The generalizability of the 
model also depends on how the topologies are represented. It is straightforward that the process model can be 
trained on the topology bitmap representation shown in Eq.(1). However, since the dimension of feature input is 
fixed as the number of elements in the initial bounding box, it is not scalable to problems with different number of 
element. In addition, the number of element is usually large which also poses challenges to the predictive model 
training process. 
To resolve the scalability issue, the topology local feature representation is proposed. Figure 3 shows an example 
of topology local feature representation. The bounding box is divided into pieces of squared patches, each of which 
is matched with a member of the pre-defined feature basis by calculating the minimum Euclidean distance. As a 
result, the topology is represented as a vector of 18 elements. To transform the bitmap representation to local 
feature representation, the dimension of the input attribute reduces dramatically and no longer sensitive to the 
element size. However, the topology local feature representation is still not generalizable to test samples with 
different initial bounding box (therefore different number of patches) and different inlet gate location. 

 
To further resolve the generalizability issue, the knowledge-inspired feature representation is proposed, which is 
inspired by the underlying physics of filling. An example of topology knowledge-inspired feature representation is 
shown in Figure 4, which consists of three major steps described below: 
1)   The flow through porous medium is governed by the Darcy’s law which states that the flow rate per unit area 

is proportional to the pressure gradient. The relatively small preform area, especially at the beginning of the 
flow, leads to dramatically reduction of resin pressure. Therefore, to capture this phenomenon, the material 
fraction volume (M) in each segment along the major flow route is calculated (upper right of Figure 4); 

2)   The length of the overall flow route also has great influence on the composite resin filling time. To capture that 
information, the skeleton of the initial topology is extracted using image processing thinning algorithm [25]. 
Then run the flood filling [26] simulation over the topology skeleton, starting at the point closest to the inlet 
gate location, and calculate the step count to finish the filling, defined as  𝑁 (lower left of Figure 4); 

3)   The initial topology bitmap is then transformed to the local feature representation. Based on a pre-defined 
critical patch pool, the search of critical patch with different sliding window size results in a sparse vector  𝑪, 
explained in Eq.(2) below: 
 

Figure 2 Bounding box for process simulation data generation. 

Inlet gate location 
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𝐶 =    [𝑐G, 𝑐-, … , 𝑐H], (2) 
where: 

𝑐8 = 0, if critical patch 𝑖  not in topology;  
𝑐8 = 1, otherwise; 
𝑞: number of selected critical patches. 

The critical patch pool is selected according to the filter-based feature selection criterion, Fisher score [27], 
inspired by the physics of flow that the resin filling time is effected by undesired local geometric patterns 
(lower right of Figure 4). 

 
The proposed knowledge-inspired feature representation is a more general topology representation for mold flow 
applications. Different from the bitmap and local feature representation, it is not sensitive to the number of element 
or the number of patch segment in the bounding box. In addition, it provides valuable information when the inlet 
gate location changes. Therefore, the trained predictive model is expected to be more generalizable to topologies 
not similar to the training set. Three topology optimization cases will be discussed in section 6 to test the process 
model robustness. 
 
5.3 Random Forest Regression Model 
After data generation and topology knowledge-inspired feature representation, the resulting transformed training 
set 𝐷 K  is summarized as Eq. (3) below: 
 

𝐷 K =    𝒙8
K , 𝑦8|  𝑖 = 1, 2, … , 𝑛 , (3) 

where: 
𝒙8
K : knowledge-inspired feature representation of topology  𝑖, 𝒙8

K = [𝑴, 𝑪, 𝑁]; 
yA: resin filling time simulation result of topology  𝑖; 
𝑛: number of training samples (= 50000 in this case). 

Since the input feature set is a mixture of continuous and discrete variables, the Random Forest [28] regression 
model is applied to the training set 𝐷 K  to build the resin filling time predictive model. The current model uses 50 
trees with the minimum leaf size of 20 as the tuning parameters. In our previous study [23], the trained regression 
model was tested to be generalizable to testing samples with different inlet gate locations and initial bounding box, 
while the other two surrogate models trained on bitmap and local feature representations failed. 
 
6. Topology Optimization considering Composite Resin Filling Time 
The resulting manufacturing process model from section 5 is applied to the compliance minimization topology 
optimization problem. The multi-objective optimization problem is formulated as minimizing both structure 
compliance and resin filling time, summarized in Eq. (4) below: 
 

min:  𝑓G 𝒙 , 𝑓- 𝒙  
s. t. 𝑉 𝒙 = 𝑉2, (4) 

where:  
𝑓G 𝒙 : structure compliance, obtained by finite element calculation; 

Inlet gate location 

Material fraction volume (M): 
[0.89, 0.72, 0.84, 0.78, 0.78, 0.56]. 

Critical patch identification (C) Original sample bitmap 

Skeleton step count (N): 33. 
Figure 4 An example of knowledge-inspired topology feature representation. 
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𝑓- 𝒙 : resin filling time, predicted by the trained manufacturing process model from section 5; 
𝑉 𝒙 : material fraction volume, set as  𝑉2 = 0.7. 

Since there is no known analytical sensitivity information for the random forest decision tree model, 
multi-objective genetic algorithm (MOGA) and Kriging level-set (KLS) [24] are used to alleviate the need for 
objective gradients and dramatically reduce the number of design variables. The dimension of the design variable 
vector 𝒙 depends on the number of knot points which is independent from the mesh size. The Pareto frontier 
results of three test cases are generated (GA settings: 500 generations, 1000 populations per generation). The 
plotted objective values are normalized by the minimum value of each objective respectively. The selected 
non-dominated Pareto results’ resin filling time responses are validated by process simulations to demonstrate the 
accuracy and robustness of the trained manufacturing process model. 
 
6.1 Test Case 1: Short Cantilever 
Test 1 has the identical bounding box and inlet gate location setting as the manufacturing process model training 
data generation, known as the in-the-bag test. Figure 5 below shows the support and load conditions of the short 
cantilever problem and its Pareto frontier result. The normalized compliance and resin filling time objective values 
for five selected non-dominated Pareto frontier points (green dots in Figure 5) are summarized in Table 1. The 
result shows a clear trade-off between the structure compliance and resin filling efficiency. 

 

 
 

Table 1 Objective values of selected Pareto 
frontier points in test case 1. 

Topology Compliance Filling Time 
1 1.00 1.44 
2 1.03 1.28 
3 1.15 1.21 
4 1.26 1.11 
5 1.84 1.00 

 

While traditional surrogate models would produce high quality approximations for such in-the-bag tests, the 
proposed data-driven model also performs excellently. To validate the manufacturing process model output, the 
five selected topologies’ resin filling time simulation results are shown in Figure 6. The simulation validation 
results are consistent with the predictive model outputs. As a result, if topology 2 is selected as the optimized result 
with both compliance and resin filling time as objectives, compared with the structurally optimized result 
(topology 1), it reduces the resin filling time of 4.8% (1499.75s to 1427.79s) and sacrifices the structure 
compliance of 2.9% (49.66 to 48.25). 

 
6.2 Test Case 2: Bridge 
The same resin filling time manufacturing process model is also applied to another topology optimization problem 
with different inlet gate location as the process model training set, known as the out-of-bag test. It is a “bridge” 
problem with two-point support and mid-span load. The inlet gate location is set in the center of the structure. The 
resulting Pareto frontier is shown in Figure 7. The objective values for selected non-dominated points (green dots 
in Figure 7) are summarized in Table 2. 
 

Figure 5 Pareto frontier result for test case 1. 
Objective: compliance 
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Table 2 Objective values of selected Pareto 
frontier points in test case 2. 

Topology Compliance Filling Time 
1 1.00 1.22 
2 1.03 1.10 
3 1.07 1.07 
4 1.11 1.02 
5 1.22 1.00 

 

The filling simulation result of selected Pareto points is shown in Figure 8. Though the predictive performance of 
out-of-bag topologies in case 2 is not as accurate as that of in-the-bag topologies in case 1, the simulation result is 
still consistent in terms of ranking as the process model output. It should be noted that traditional surrogate models 
would fail to provide reasonable approximations in this case since the gate location is different from that of the 
training set. As a result, if topology 2 is selected as the multi-objective optimized structure, compared with the 
structurally optimized result (topology 1), it reduces the resin filling time of 6.7% (410.53s to 382.85s) and 
sacrifices the structure compliance of 2.9% (6.93 to 7.13). 

 
6.3 Test Case 3: Long Cantilever 
Similarly, another out-of-bag test with different initial bounding box is conducted to further demonstrate the 
process model robustness. As discussed in section 5, while the traditional surrogate models cannot be applied due 
the change of input feature dimension, the proposed process model trained by more general features is still valid. 
The Pareto frontier result for test case 3 is presented in Figure 9. The objective values for selected non-dominated 
points (green dots in Figure 9) are summarized in Table 3. 

 

 

Table 3 Objective values of selected Pareto 
frontier points in test case 3. 

Topology Compliance Filling Time 
1 1.00 1.88 
2 1.01 1.45 
3 1.08 1.26 
4 1.27 1.14 
5 1.74 1.00 

 

The filling simulation result of selected Pareto points for test case 3 is shown in Figure 10. The simulation result is 
consistent in terms of ranking as the process model output. As a result, compared with the structurally optimized 
topology (topology 1), if topology 2 is selected as the multi-objective optimized result, it reduces the resin filling 
time of 6.0% (3466.09s to 3258.48s) and sacrifices the structure compliance of 1.3% (141.29 to 143.09). 

Figure 7 Pareto frontier result for test case 2. 
Objective: compliance 
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According to the result of three multi-objective topology optimization test cases above, the resin filling time 
process model trained on features inspired by underlying physics of filling provides consistent topology filling 
efficiency approximation for both in-the-bag and out-of-bag tests. The model applicability to testing samples not 
similar to the training set demonstrates its better generalizability than traditional surrogate models which usually 
struggle in out-of-bag tests. 
 
7. Discussion 
This paper applies the resin filling time manufacturing process model to the compliance minimization topology 
optimization problem to identify topologies with improved manufacturability, yet minimum structure performance 
sacrifice, compared with the structurally optimized result. The scalability and generalizability of the data-driven 
process model is validated by three topology optimization test cases. The model applicability to samples not 
similar to the training set resolves the key limitation of traditional surrogate models. As of the future works, other 
topology representations can be studied to further improve the model predictive accuracy and generalizability. 
Several current assumptions should be relaxed including fixed material fraction volume and isotropic permeability 
of the preform. In addition, the data-driven manufacturing constraint modeling (MCM) can also be applied to other 
manufacturing processes (see, for example, sheet metal stamping application in reference [4]) to improve the 
manufacturability of components generated by computer-based structure optimization. 
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