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1. Abstract
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations,
especially for use as energy pumping devices for buildings under seismic loading. Through nonlinear stiffness
properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper
(TMD), the NES has no inherent natural frequency, allowing the NES to absorb energy over a wide range of
frequencies. The efficiency of the NES, however, is extremely sensitive to small perturbations in design parameters
or initial conditions. In many cases, it has been observed that the most efficient NES designs are in fact very close
to low efficiency regions in the design space.

This work will present an optimization technique for NESs. In order to optimize NES devices, the high sen-
sitivity of NES to uncertainty, with almost discontinuous behaviors, requires specific reliability-based design op-
timization (RBDO) techniques. In this work, a support vector machine classifier, insensitive to discontinuities, is
used to construct the boundaries of the failure domain (low efficiency regions) through adaptive sampling and clus-
tering. Several RBDO results for various NES configurations will be provided. In particular, NES configurations
in parallel will be investigated.
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3. Introduction
Nonlinear Energy Sinks (NESs) are an emerging technique for passive and irreversible reduction of amplitude of
vibration [3]. NESs have a wide variety of applications, such as energy pumping away from a building under
seismic loading [8, 9] or in aeroelasticity [4]. NESs rely on a nonlinear, typically cubic, stiffness property which
is at the origin of the irreversible transfer of energy. Two NES configurations are typically used in the literature:
Configuration I—NES coupled to a vibrating system through a weak linear spring, and connected to the ground
via a nonlinear spring—and Configuration II–NES with small mass directly coupled to linear system through non-
linear spring [7]. The effectiveness of a NES with small mass makes the configuration II NES ideal for use in a
building under seismic loading [9].

NESs are often proposed as an alternative to Tuned Mass Dampers (TMDs) that are widely used to absorb and
dissipate energy from a vibrating main system. NESs act passively, like TMDs, but unlike TMDs, they do not have
to be tuned to a specific natural frequency to effectively dissipate energy from the vibrating main system. Instead,
NESs absorb energy over a wide range of natural frequencies, which is particularly attractive in designing a system
with a changing natural frequency.

It has been observed that NESs are very sensitive to perturbations in design parameters or loading conditions,
leading to a near discontinuous behavior of performance metrics such as the amount of absorbed energy. This
discontinuous behavior allows one to identify two distinct regions: one where energy pumping occurs and another
one where it does not [7, 2].

4. Configuration II NES
The Configuration II NES consists of a small mass directly coupled to a linear system through a nonlinear spring.
A simple two DOF system can be used to illustrate the principles of NES behavior and is depicted in figure 1a.
It is composed of a main system 1 (with angular eigen-frequency ω1, damping λ1) and a sub-system 2 (the NES)
with nonlinear stiffness α , damping λ2 and mass ratio (NES mass divided by main system mass) ε . The system is
excited through an initial velocity (ẋ0) applied to the main system. The full system behavior is calculated through
equation 1. The efficiency of the NES is quantified by the percentage of initial energy that the NES dissipates
(ENESin f ), expressed in equation 2 [7].{

ẍ+λ1ẋ+λ2(ẋ− ẏ)+ω2
1 x+α(x− y)3 = 0

ε ÿ+λ2(ẏ− ẋ)+α(y− x)3 = 0
(1)

ENESin f = lim
t→∞

λ2
∫ t

0(ẏ(τ)− ẋ(τ))2dτ

1
2 v2

1
(2)
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Figure 1: One (a) and Two (b) Configuration II NES systems

This article also details a 3 DOF case where two NESs in parallel are coupled to a main system as in figure 1b. The
equations of motion in this case are given in equation 3 [6]. The efficiency of the two NES system is measured as
the combined percentage of energy dissipated by the two NESs.

ẍ+λ1ẋ+λ21(ẋ− ẏ1)+λ22(ẋ− ẏ2)+ω2
1 x+α1(x− y1)

3 +α2(x− y2)
3 = 0

ε1ÿ1 +λ21(ẏ1− ẋ)+α1(y1− x)3 = 0
ε2ÿ2 +λ22(ẏ2− ẋ)+α2(y2− x)3 = 0

(3)

5. Discontinuities and activation thresholds
The sensitivity of the efficiency of the NES to small perturbations can be very marked [7], [2]. Figure 2a provides
an example where ENESin f is plotted as a function of ẋ0. A discontinuity occurs at ẋ0 =0.15 m/s, but there is also a
relatively steep decay of ENESin f as ẋ0 is further increased. These jumps can be seen as activation energy necessary
for energy pumping to occur [6]. At the threshold of the activation energy, the NES performance will be extremely
efficient, but beyond the threshold the performance deteriorates. Each NES has a relatively narrow range of initial
energies where energy dissipation is high. Similar marked changes in behavior appear when studying ENESin f as
a function of design parameters α and ε (figure 2b ). Once again a discontinuity appears between the regions
of energy pumping and no energy pumping. Due to this high sensitivity to design and excitation perturbations,
techniques for the design optimization of NESs must be tailored to stay away from the inefficient regions (non
energy pumping as well as low ENESin f values).
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Figure 2: Discontinuities in ENESin f metric. (a) ENESin f response to variations in ẋ0, with ε=0.1, α=1, λ1=0.004,
λ2=0.008, ω1=1. (b) ENESin f response to variations in α and ε , λ1=0.01, λ2=0.01, ω1=5 and ẋ0=5 with clustering
on ENESin f values.

6. Identification of failure regions
6.1. Clustering
The first step in reliability based design optimization is to segregate efficient and inefficient NES behaviors.

The discontinuity illustrated in the previous section enables such a classification, however the location of the
discontinuities is often difficult to obtain, especially in high dimensional space. For this reason, a clustering
technique such as K-means constructed from a design of experiments can be used without any a priori knowledge
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of the location of the discontinuities. However, the clustering technique does not always identify properly the
clusters as there can be a wide range of energy values over the design space. In order to help the clustering
algorithm, samples corresponding to “low” energy levels are removed. This low level energy is found by setting α

to its minimum value while maintaining the other parameters at their mean value. Although this approach is rather
heuristic, it was shown for the problems treated to provide a proper clustering. An example of clustering in the ε

and α space using the proposed technique is depicted in figure 2b.

6.2. SVM
Beyond clustering of the system’s responses, we would like to identify the region of the parameter space where the
efficiency of the NES is “acceptable”. In other words, we would like to find the region of the space corresponding
to the cluster of better efficiency, using the ENESin f metric. For this purpose, we will use a technique referred to
as explicit design space decomposition (EDSD) [1]. The basic idea is to construct the boundary separating two
classes of samples (e.g., belonging to the two clusters) in terms of chosen parameters. This is achieved using a
Support Vector Machine (SVM) which provides an explicit expression of the boundary in terms of the parameters.
The SVM boundary is trained using a design of experiments.

6.3. Refinement of the SVM boundary. Adaptive sampling.
Because the approximated SVM boundary might not be accurate, an adaptive sampling scheme is used to refine

the boundary. The sampling algorithm is described in detail in [1]. A fundamental aspect of the algorithm is the
selection of samples in the sparse regions of the space (i.e., as far away as possible from existing samples) and also
in the regions of highest probability of misclassification by the SVM. The latter criterion is obtained by locating
the samples on the SVM. These samples are found by solving the following global optimization problem (side
constraints omitted):

max
x

||x−xnearest ||

s.t. s(x) = 0 (4)

The results section will provide examples of two and three dimensional boundaries constructed using both de-
sign and aleatory variables.

7. Reliability Based Design Optimization
The efficient calculation of probabilities with SVM using Monte-Carlo simulations can be used towards the so-

lution of a reliability-based design optimization (RBDO) problem [5], which in the case of a NES, could be
formulated as follows:

max
µd

E(ENESin f (X
d,Xa)) (5)

s.t. P((Xd,Xa) ∈Ω)≤ PT

µ
d
min ≤ µ

d ≤ µ
d
max

where E is the expected value, µd is the vector of means of the distributions of the random design variables Xd .
Xa are aleatory random variables which contribute to the expected value of the objective function as well as the
probabilistic constraints, but whose hyper-parameters are not to be optimized. Ω is the failure region as defined by
the SVM boundary, PT is a target probability.

Note that the probabilistic constraint in the previous problem cannot be used as such because of the noise
introduced by the Monte-Carlo simulations which would make the constraint non-differentiable. For this reason,
this constraint is typically approximated using a response surface or a metamodel such as Kriging. To regularize
the problem further, the reliability index β is approximated instead of the probability Pf itself [5]. β can be defined
using the standard cumulative distribution function Φ:

β =−Φ
−1(Pf ) (6)

To further reduce computational time and make this RBDO problem tractable, the objective function (i.e., the
expected value) as well as the energy are both approximated using a Kriging metamodel.

8. Results
The first two RBDO problems solved use NES parameters as random design variables and main system initial
velocity ẋ0 as an aleatory variable. The parameters of the main system (ω1, and λ1) are fixed. In the first problem,
only α and ε are random design variables while λ2 is fixed. In the second problem all three NES design parameters
are random design variables. These problems focus on optimally tuning a NES for a given main system so that the
expected value of the efficiency is maximized for a range of initial main system velocities. In both cases the failure
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domain Ω is defined by the SVM constructed using the clustering technique described in Section 6.1. In all cases
106 Monte-Carlo samples are used.

8.1. 1 NES. 3D RBDO with α ,ẋ0,and ε

max
µα ,µε

E(ENESin f (µα ,µε , ẋ0)) (7)

s.t. P((α,ε, ẋ0) ∈Ω)≤ 0.15
−2≤ log(µα)≤ 5
0.01≤ µε ≤ 0.2 1≤ ẋ0 ≤ 10

where log(α) and ε follow normal distributions: log(α)∼N(µlog(α),0.072) and ε ∼N(µε ,0.00192). The standard
deviations correspond to 1% of the range of log(α) and ε respectively. The excitation follows a uniform distribution
ẋ0 ∼U(1,10). The fixed parameters are λ1=λ2=0.01 and ω1=5.

The failure region Ω (i.e., the SVM) is presented in Figure 3. The Kriging approximations Ẽ(ẼNESin f ) and β as
well as the training points are depicted in Figures 4a and 4b. It is noteworthy that the approximation of the energy
is built using the cluster with highest values only. Approximation error metrics are provided in Table 2.

Figure 3: SVM separating the two levels of NES efficiency identified through clustering of ENESin f for α , ε , and
ẋ0.
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Figure 4: Training and approximations of (a) E(ẼNESin f ) and (b) β for RBDO problem varying α , ε , and ẋ0.

The RBDO results are given in Figure 5 and summarized in Table 1. The actual probability of failure (as
opposed to the approximated one) calculated based on the SVM is also provided in the table.
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Table 1: Results table for 1 NES RBDO problem
varying α , ε , and ẋ0.

Probabilistic Optimum
α 1.32
ε 0.099

Pf from β̃ 0.15
Pf from SVM 0.19

Ẽ(ẼNESin f ) 84.9 %
E(ENESin f ) 77.6 %

Table 2: Error metrics table for 1 NES RBDO prob-
lem varying α , ε , and ẋ0.

Approximation RMAE R2

ẼNESin f 1.11 0.91
β̃ 0.171 0.99
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Figure 5: Results plot for 1 NES RBDO problem varying α , ε , and ẋ0.

8.2. 1 NES 4D RBDO (α ,ẋ0,λ2, and ε)
This RBDO problem adds λ2 as a random design variable with a normal distribution. In this problem all three NES
parameters are treated as random design variables, while ẋ0 is still treated as an aleatory variable.

max
µα ,µε ,µλ2

E(ENESin f (µα ,µε ,µλ2 , ẋ0)) (8)

s.t. P((α,ε,λ2, ẋ0) ∈Ω)≤ 0.2
−2≤ log(µα)≤ 5 0.01≤ µε ≤ 0.2
0.001≤ µλ2 ≤ 0.1 1≤ ẋ0 ≤ 10

where log(α), ε , and λ2 follow normal distributions: log(α) ∼ N(µlog(α),0.072), ε ∼ N(µε ,0.00192), and
λ2 ∼ N(µλ2 ,0.000992).

Error metrics for this four dimensional problem are used to check the quality of the Kriging approximations
(Table 4).

Table 3: Results of 1 NES 4D RBDO problem with
α , ε , λ2, and ẋ0 varied.

Approximation RMAE R2

ẼNESin f 1.61 0.76
β̃ 1.61 0.97

Table 4: Error metrics of 1 NES 4D RBDO problem
with α , ε , λ2, and ẋ0 varied.

Probabilistic Optimum
α 2.76
ε 0.16

λ2 0.09
Pf from β̃ 0.00

Pf from SVM 0.00
Ẽ(ẼNESin f ) 95.7 %
E(ENESin f ) 96.1 %
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8.3. 2 NES RBDO (α1,α2, and ẋ0). Comparison to 1 NES.
The final RBDO problem demonstrates the efficiency of a two NES system as compared to a single NES system.
For the single NES problem, the nonlinear stiffness α of the NES and the initial velocity ẋ0 are varied and the
corresponding optimization problem is:

max
µα

E(ENESin f (µα , ẋ0)) (9)

s.t. P((α, ẋ0) ∈Ω)≤ 10−3

−2≤ log(µα)≤ 5 1≤ ẋ0 ≤ 10

where log(α) follows a normal distribution: log(α) ∼ N(µlog(α),0.212). The standard deviations correspond to
3% of the range of log(α). ẋ0 ∼U(1,10) and λ1=λ2=0.01, ε=0.1, and ω1=5. The two dimensional SVM is given
in Figure 7a. The problem does not have a feasible solution with one NES. In fact, the minimum probability of
failure is over 20%. The approximated Ẽ(ẼNESin f ) value at this point is 82.4%. The error metrics for the Kriging
fits for this problem are given in table 5.
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Figure 6: SVM for 1 NES problem varying α and ẋ0.

Table 5: One NES problem error metrics.

Approximation RMAE R2

ẼNESin f 0.42 0.96
β̃ 0.047 0.99

For the 2 NES case, the optimization problem becomes:

max
µα1 ,µα2

E(ENESin f (µα1 ,µα2 , ẋ0)) (10)

s.t. P((α1,α2, ẋ0) ∈Ω)≤ 10−3

−2≤ log(µα1)≤ 5 −2≤ log(µα2)≤ 5 1≤ ẋ0 ≤ 10

where log(α1) and log(α2) follow normal distributions: log(α1)∼N(µlog(α1),0.212) log(α2)∼N(µlog(α2),0.212).
The standard deviations correspond to 3% of the range of log(α), ẋ0 ∼U(1,10) , λ1=λ21=λ22=0.01, and ω1=5. In
addition, the mass of each NES is 5% (i.e., ε1=ε2=0.05) of the main system total mass, adding to a total NES mass
of 10%, which is the value used in the one NES problem. The three dimensional SVM approximation of the failure
domain is depicted in Figure 7a. The SVM appears symmetric because the fixed NES parameters are identical for
the two NESs. The approximation Ẽ(ẼNESin f ) and the training points are given in figure 7b. The error metrics for
all Kriging approximations are given in Table 7. The β approximation is given in Figure 8a. Finally, the RBDO
results are given in Figure 8b and Table 6. The actual value of the probability of failure as calculated from the
SVM is given in Table 6.

The two NES system gives a more robust optimum, successfully achieving a probability of failure of 10−3. The
E(ẼNESin f ) value is also larger in the two NES case. The distributions of ENESin f over the ẋ0 space for the optimal
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Figure 7: (a) Three dimensional SVM and (b) E(ẼNESin f ) approximation for two NES RBDO varying α1, α2, and
ẋ0.
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Figure 8: (a) β approximation and (b) RBDO results for two NES RBDO varying α1, α2, and ẋ0

Table 6: Results table for 2 NES RBDO problem
varying α1, α2, and ẋ0.

Probabilistic Optimum
α1 11.9
α2 1.08

Pf from β̃ 1.00∗10−3

Pf from SVM 9.0∗10−4

Ẽ(ẼNESin f ) 90.3 %
E(ENESin f ) 90.6 %

Table 7: Error metrics table for 2 NES RBDO prob-
lem varying α1, α2, and ẋ0.

Approximation RMAE R2

ẼNESin f 0.00 0.99
β̃ 0.080 0.99

NESs are given in figure 9. The two NES system has a higher ENESin f value for most of the excitation range. The
two NES system is more robust and the decline in ENESin f is slower as ẋ0 increases.
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Figure 9: Variation of ENESin f with respect to ẋ0 for the optima found through RBDO of one and two NESs varying
α and ẋ0.

9. Conclusion
This paper introduces a new methodology for the optimization under uncertainty of a Configuration II NES. The
methodology stems from the realization that the efficiency of a NES might be discontinuous and highly sensitive
to uncertainty. For this reason, specific tools such as SVM and clustering are used to perform the optimization
and propagate uncertainty. In addition a one NES and a two NES system were compared. The two NES system is
more robust and gives a higher expected performance than the one NES system with an equal total NES mass. The
next steps of this research will continue to increase the dimensionality for both the single NES and the multi NES
systems. A transition towards more realistic simulations will be explored, particularly through the use of finite
element modeling.
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