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1. Abstract
This paper presents a topology optimization method using the lattice Boltzmann method for the design of a flow
channel considering two-phase fluid flows. This approach enables the design of fluidic devices such as two-phase
microchannels that achieve a desired flow with maximal performances such as mixing and reaction, and extraction
efficiencies. The optimization problems are formulated using the continuous Boltzmann equation, and the design
sensitivities are derived based on the adjoint lattice Boltzmann method. In the adjoint lattice Boltzmann method,
based on a novel discretization strategy similar to that of the lattice Boltzmann method, the adjoint equations can
be implemented as simple time evolution equations. Based on the above formulations, we construct a topology
optimization method incorporating level set boundary expressions for the design of a two-phase microchannel that
aims to maximize extraction efficiency while minimizing the pressure drop. A numerical example is provided to
confirm the utility of the proposed method.
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3. Introduction
The aim of this research is to construct a topology optimization method for the design of a flow channel considering
two-phase fluid flows. Using this approach, fluidic devices such as two-phase microchannels can be designed so
that they achieve a desired flow and accomplish maximal mixing and reaction, or extraction efficiencies.

These performances strongly depend on the design of the channel configuration, so that each process, such as
mixing, reaction, or extraction, is finished as quickly as possible (Fig. 1). In addition, to prevent damage to the
microchannels, minimizing the pressure drop in the microchannel system is an important factor. Thus, to meet
the most important design requirements of a two-phase microchannel, the maximization of the above efficiencies
and the minimization of the pressure drop must be simultaneously considered. Designer intuition alone, however,
seldom yields an optimal channel configuration that sufficiently satisfies these requirements.

To overcome this problem, topology optimization [1] is a particularly powerful approach for obtaining use-
ful designs for the channel configuration of the devices under consideration here. The basic concept of topology
optimization is the introduction of an extended design domain, the so-called fixed design domain, and the replace-
ment of the optimization problem with a material distribution problem, using the characteristic function. Borravall
and Petersson [2] pioneered a topology optimization method for a dissipation energy minimization problem under
Stokes flow, in which the material distribution in the fixed design domain is represented as consisting of either fluid
or solid domains.

Based on this methodology, Okkels and Bruus [3] proposed a topology optimization method for the design of a
micro reactor in which the reaction effect is mathematically modeled, and the aim was to achieve maximal reaction
efficiency in the microchannel system given a uniform concentration of reactants. Andreasen et al. [4] proposed
a topology optimization method for the design of a micro mixer in which maximization of mixing performance
was the aim. And Makhija et al. [5] applied the lattice Boltzmann method (LBM) [6] in mixing performance
maximization problem and investigated the relationship between the mixing performance and the pressure drop.

The basic idea of the above optimization methodologies for multi-component fluid flows is the introduction
of concentration, governed by a convective-diffusion equation, into the formulation of the optimization problem.
That is, since the fluid flow is not affected by concentration (one-way coupling), the above research cannot treat
fluid flows of immiscible liquids in which the interface effect between the two phases must be considered. In
particular, since the extraction process strongly depends on the difference between molecular diffusive coefficients

1



Figure 1: Schematic diagram of typical experiments in microchannel device.

in two-phase fluid flows [7], the conventional approach must be extended so that flows can be treated in extraction
efficiency maximization problems.

Here, we construct a new topology optimization method for an extraction efficiency maximization problem,
in which two-phase fluid flows are analyzed based on the two-phase LBM proposed by Inamuro et al. [8]. Since
special treatments for tracking an interface are unnecessary in this method, the LBM is suitable for the computation
of multi-phase fluid flows. In addition, since the LBM is an explicit scheme based on a simple time evolution equa-
tion, the adjoint equation can be formulated with this equation that is discretized using the LBM [9]. Previously,
we investigated the applicability of this adjoint lattice Boltzmann method to topology optimization problems, and
verified that this approach enables the design sensitivity to be quickly obtained at each optimization step [10].

In the following section, the basic concept of the two-phase LBM is discussed and the topology optimization
problem is formulated for the extraction efficiency maximization problem. The numerical implementations and
optimization algorithms are then explained and, finally, we provide a numerical example to validate the utility of
the proposed method.

4. Formulation
4.1. Two-Phase Lattice Boltzmann Method
We now discuss the concept of the two-phase LBM [8] that will be applied here to incompressible fluids while
considering two-phase fluid flows under identical density conditions. In the following, we use non-dimensional
variables, as used as in [8]. In the LBM, a modeled fluid, composed of identical particles whose velocities are
restricted to a finite set of N vectors ccci, is considered. We use the two-dimensional nine-velocity model (N = 9)[6]
and three particle velocity distribution functions, fAi, fBi, and fCi. The function fAi is used as an index function
for computation of the interface profile in phase X and phase Y , fBi is used for computation of the pressure and
velocity of the two-phase fluid flows, and fCi is used for computation of the concentration.

The evolution of the particle distribution functions fσ i(xxx, t) (σ = A,B,C) with velocity ccci at point xxx and at time
t are computed with the following equation:

fσ i(xxx+ ccci∆x)− fσ i(xxx, t) =
1

τσ

{
fσ i(xxx, t)− f eq

σ i (xxx, t)
}
, (1)

where f eq
σ i are equilibrium distribution functions, τσ represents non-dimensional single relaxation times, ∆x is the

spacing of the grid, and ∆t is the time step.
The index function ψ(xxx, t), pressure p(xxx, t), velocity uuu(xxx, t), and concentration T (xxx, t) are defined as follows:

ψ =
9

∑
i=1

fAi , p =
1
3

9

∑
i=1

fBi , uuu =
9

∑
i=1

fBi ccci , T =
9

∑
i=1

fCi . (2)

The equilibrium distribution functions f eq
σ i (xxx, t) are given by

f eq
Ai = Hiψ +Fi

(
p0−κ f ψ∇

2
ψ
)
+3Eiψccci ·uuu+Eiκ f GGG : (ccci⊗ ccci), (3)

f eq
Bi = Ei

{
3p+3ccci ·uuu−

3
2
|uuu|2 + 9

2
(ccci ·uuu)2

}
+EiκgGGG : (ccci⊗ ccci), (4)

f eq
Ci = EiT (1+3ccci ·uuu) , (5)
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Figure 2: Schematic figure of fixed design domain D in the extraction efficiency maximization problem.

where parameters Ei, Hi, and Fi are defined so that E1 = 4/9, E2 =E3 =E4 =E5 = 1/9, E6 =E6 =E8 =E9 = 1/36,
H1 = 1, H2 = H3 = · · ·= H9 = 0, F1 =−7/3, and Fi = 3Ei (i = 2,3, · · · ,9). κ f and κg are parameters with constant
values that determine the width of the interface and the strength of the interfacial tension, respectively. The tensor
GGG(xxx, t) is defined as follows:

GGG =
9
2

∇ψ⊗∇ψ− 3
2
|∇ψ|2δδδ , (6)

where δδδ represents the Kronecker delta. In addition, p0(xxx, t) is given by

p0 = ψT̄
1

1−bψ
−aψ

2, (7)

where a, b, and T̄ are parameters for determining the profile of index function ψ .
Applying the asymptotic theory to Eqs. (1)–(7), we find that the macroscopic variables, p and uuu, satisfy the

Navier-Stokes equations with relative errors of O(∆x2). Note that the pressure is given by p+(2/3)κg∇|ψ|2 in
the interface [8]. In addition, the concentration T satisfies the convective-diffusion equation, and the extraction
process is represented based on the values of T . The details of the extraction process will be described in the next.

4.2. Topology Optimization Problem
We now formulate the topology optimization problem for the design of a flow channel considering two-phase fluid
flows. A schematic diagram of this problem is shown in Fig. 2, with fixed domain D composed of fluid domain Ω

and solid domain D\Ω. The inlet boundary condition includes a prescribed velocity, uuu = uuuin at Γin, and the outlet
boundary condition includes a prescribed pressure, p = pout at Γout. At the inlet boundary Γin, the order parameters
ψ and concentrations T are respectively set to ψ = ψX

in at ΓX
in, ψ = ψY

in at ΓY
in, T = T X

in at ΓX
in, and T = TY

in at ΓY
in,

where Γin = ΓX
in∪ΓY

in and ΓX
in∩ΓY

in = /0. In addition, the boundary condition for ψ and T at Γout∪Γwall is set to a
Neumann condition, with ∂ψ/∂nnn = 000 and ∂T/∂nnn = 000.

To simultaneously evaluate the extraction efficiency and pressure drop, we define an objective functional, J,
based on the weighted sum method, as follows:

J = w1

∫ t1

t0

∫
Γ

−nnn ·uuu
(

p+
1
2

ρ|uuu|2
)

dΓdt +w2

∫ t1

t0

∫
Ωobs

(T −〈T 〉in)2

2〈T 〉2in
dΩdt, (8)

where t0 and t1 represent the time step of the LBM calculation, w1 and w2 are the weighting parameters, ρ is the
fluid density given by 3p due to the characteristic of the LBM, and 〈T 〉in is the average value of T at the inlet
boundary. In the above equation, the second term represents the relative error of T with respect to 〈T 〉in in the
observation domain, Ωobs ⊂ D. The phase X and phase Y concentrations are set to different values, i.e., T X

in 6= TY
in .

Thus, the second term in Eq. (8) seldom becomes equal to zero during the optimization process. Here, we assume
that the extraction process is completely finished when the value of this term does become equal to zero. In
addition, since the molecular diffusive coefficient, k = 1/3τC∆x, is depend on the kind of fluid, the relaxation time
τC is defined as follows:

τC(ψ) =
ψY

in−ψ

ψY
in−ψX

in
τ

X
C +

ψ−ψX
in

ψY
in−ψX

in
τ

Y
C , (9)
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where τX
C and τY

C represent the relaxation time in phase X and phase Y , respectively.
Based on the above objective functional in Eq. (8), we formulate a topology optimization problem based on

our previous research [10], in which the Boltzmann equation is employed when applying a continuous adjoint
sensitivity analysis, as follows:

inf
γ∈A

J [ fσ i ; γ ], (10)

subject to


Sh ∂ fσ i

∂ t + ccci ·∇ fσ i =− 1
τσ i

(
fσ i− f eq

σ i

)
+3Eiccci ·FFFγ δσB (Boltzmann equation),

fσ i(xxx, t0) = f 0
σ i (initial condition),

fσ i(xxx, t) = f bc
σ i (xxx, t) (boundary condition),

(11)

where γ(xxx) represents the design variable belonging to the function space A = {γ ∈ L∞(D) |0 6 γ 6 1 in D, Vγ 6
0}, where Vγ (:=

∫
D γ dΩ−Vmax) is the volume constraint that restricts the maximum fluid volume to Vmax. We

let γ vary between zero and unity, with γ = 0 corresponding to a solid domain and γ = 1 to a fluid domain. In
Eq. (11), Sh is the Strouhal number, and f 0

σ i and f bc
σ i represent the initial and boundary values for the Boltzmann

equation, respectively. We note that the above Boltzmann equation is the so-called discrete Boltzmann equation
that is not the original equation, since the discrete particle velocities ccci are used. The reason why we use this
equation to formulate the optimization problem is that the boundary conditions for adjoint equations can be easily
derived based on the adjoint sensitivity analysis.

In addition, FFFγ is an artificial force, based on the design variable γ , defined as

FFFγ =−α(γ)uuu, where α(γ) = αmin +(αmax−αmin)Ĥ(γ). (12)

In this equation, α(xxx) is the local inverse permeability based on Darcy’s law [2], and αmin and αmax are parameters
constant value that determine the profile of α . In this study, these parameters are set to αmin = 0 and αmax = 1.0,
respectively. The profile of Ĥ is defined as a convex interpolation whose formulation will be described later.

4.3. Level Set-Based Topology Optimization Method
Based on the previous study [11], we use the level set function, φ(xxx), to express the boundary, ∂Ω, between fluid
and solid domains, as follows: 

0 < φ(xxx)6 1 for xxx ∈Ω\∂Ω,

φ(xxx) = 0 for xxx ∈ ∂Ω,

−1 6 φ(xxx)< 0 for xxx ∈ D\Ω.

(13)

The level set function has upper and lower limits imposed for the regularization term used to regularize the op-
timization problem. In addition, Ĥ is replaced by a smoothed Heaviside function Ĥφ (φ) that is defined so that
0 6 Ĥφ 6 1, as used in the previous study [11].

In a level set-based approach, the optimization problem is replaced with a problem to find an optimal dis-
tribution of the level set function. We explore the optimal distribution of φ using a time evolution equation, as
follows:

∂φ(xxx,ς)
∂ς

=−K
{

J′(xxx,ς)− τ∇
2
φ(xxx,ς)

}
, (14)

where K > 0 is a constant parameter, τ > 0 is the regularization coefficient that is set to an appropriate value so
that the smoothness of φ is maintained during the optimization process, and ς is a fictitious time corresponding to
a time step in the optimization. The design sensitivity J′ is defined based on the Fréchet derivative.

5. Optimization Algorithm
The optimization algorithm of the proposed method is the following.

Step 1. aThe initial level set function is set.

Step 2. bThe two-phase lattice Boltzmann equations are calculated until a steady-state condition is satisfied.

Step 3. cIf the criteria of the objective functional and inequality constraint are satisfied, an optimal configuration is
obtained and the optimization is finished, otherwise the design sensitivity is calculated based on the adjoint
sensitivity analysis [10].
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Figure 3: Design settings, optimal configuration, and the distributions of order parameter and concentration.

Step 4. dThe level set function is updated using the finite element method, after which the optimization procedure
returns to Step 2 of the iterative loop.

6. Numerical Example
Here, we provide a numerical example using the proposed method. Figure 3(a) shows the design settings in the ex-
traction maximization problem. The analysis domain is discretized using 200∆x×50∆x grids, and the volume con-
straint is set with Vmax = 0.5. The optimization parameters are set so that K = 1, τ = 8.0×10−3, ∆ς = 0.5, w1 = 1.0,
and w2 = 0.01. The initial distribution of the level set function is set to φ(xxx,0) = sin(6πx/200∆x)sin(2πy/50∆x),
so that several holes are present in D at the initial optimization step, ς = 0. The Reynolds number is set as
Re = 10, with the reference length using the inlet width and the reference velocity using the inlet velocity. The
kinematic viscosity is given by ν = 1/3(τB− 1/2)∆x. The parameters for the two-phase LBM are set so that
κ f = κg = 1.0× 10−2, a = 9/49, b = 2/21, T̄ = 0.55, T X

in = 1.0, TY
in = 0.0, ψX

in = 1.0, τX
C = 0.503, τY

C = 0.553,
and ψY

in = 0.5. Thus, the Schmidt number and the Péclet number are given by Sc = 10 and Pe = 100, respectively.
As shown in Fig. 3(b), a sinuous channel is obtained as an optimal configuration, a suitable form that suf-

ficiently diffuses the concentration of the two phases, whose distribution is shown in Fig. 3(d). In addition, we
can confirm that the interface between phase X and phase Y is expressed by the order parameter value, whose
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distribution is shown in Fig. 3(c). We note that the obtained optimal configuration is similar to the results of
previous studies [5,12], in which the interface effect is not treated while the concentration is calculated based on
the convective-diffusion equation.

7. Conclusion
This paper proposed a new topology optimization method using a two-phase LBM for the design of the channel
configuration in a microchannel device. In this research, the extraction process was modeled using concentration
values that are governed by a convective-diffusion equation. The presented method was applied to an extraction
maximization problem and a numerical example demonstrated the validity of the proposed method.
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