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1. Abstract
In a previous research, we proposed a consistent grayscale-free topology optimization method using the level-
set method and zero-level boundary tracking mesh. In this method, the shape and topology of the design target
are represented using the level-set method and the state variables are computed using a mesh tracking the zero
iso-contour of the level-set function, which we call the zero-level boundary. Because of the characteristics of
the level-set method and zero-level boundary tracking mesh, essentially grayscale-free representation is achieved.
Furthermore, a double-well potential based regularization technique is employed in the proposed method to regu-
larize the structural optimization problem. Because of these enhancements, we realize essentially grayscale-free
topology optimization where the design variables are updated on the basis of the standard framework of mathemat-
ical programming. In the present research, we apply the proposed grayscale-free topology optimization method
to several structural optimization problems in industry, such as the minimum compliance and invehicle reactor
design problems. Through the application to these design problems, we investigate the potential of the proposed
grayscale-free topology optimization method.
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3. Introduction
Topology optimization is a design approach for yielding superior structural designs while considering the shape and
topology. There are two basic ideas in topology optimization: one is replacing the original structural design prob-
lem with a material distribution problem in a given design domain, and the other is updating the design variables
representing material distribution by using mathematical programming. Because of mathematical programming, it
is expected that the optimal solution, i.e., the optimal structure, is obtained.

While homogenization or density based topology optimization [1, 2] has achieved great success, topology
optimization based on the level-set method has recently gained attention from many researchers. The level-set
method [3] is a shape representation method for different two phases; the distribution of these two phases is
represented by the sign of a scalar function called the level-set function. On the basis of this shape representation
method, the material distribution of the target structure is represented using the level-set function in level-set based
topology optimization [4, 5, 6].

Because the structural boundary is always clearly represented by the level-set method, grayscale elements
seems to be suppressed in level-set based topology optimization. This is a great advantage when comparing
with homogenization or density based topology optimization. However, grayscale elements cannot be completely
suppressed even in level-set based topology optimization when the state variables are computed using a fixed mesh
such as the Eulerian mesh for maintaining the level-set function. To realize completely grayscale-free topology
optimization, we have proposed a level-set based topology optimization method [7]. In the proposed method, the
shape and topology of the design target are represented using the level-set function, and the state variables are
computed using a mesh that conforms to the structural boundary, i.e., the zero iso-contour of the level-set function.

In this paper, we further investigate the usefulness of the proposed method by applying it to several design
problems, concretely, the minimum compliance problem and an invehicle reactor design problem. In Section 4,
we briefly explain the grayscale-free topology optimization method that we previously proposed. In Section 5, we
discuss how apply the proposed method to the two design problems. In Section 6, we provide several numerical
examples to confirm the validity of the applications. Finally, we conclude the discussion in Section 7.

4. Proposed Grayscale-free Topology Optimization Method
In this section, we briefly explain the grayscale-free topology optimization method proposed in Reference [7].
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4.1. Shape Representation Based on the Level-set Method
In the proposed method, the shape and topology of the target structure are represented using the level-set function
ϕ(x), which is defined as

ϕ(x)> 0 for ∀x ∈ Ω\ (∂Ω\∂D),

ϕ(x) = 0 for ∀x ∈ ∂Ω\∂D, (1)
ϕ(x)< 0 for ∀x ∈ D\Ω,

where D is the design domain, Ω is the material domain, ∂D and ∂Ω are, respectively, the boundaries of D and Ω,
and x is a position in D. Furthermore, the smoothness of ϕ is ensured by solving the following equation [8]:

−R2∇2ϕ +ϕ = ψ in D,
∂ϕ
∂n

= 0 on ∂D, (2)

where ψ is a function that governs ϕ , and R is the length scale parameter.
In the implementation, ϕ and ψ are discretized using the Eulerian mesh, and the discretized ϕ and ψ are

represented by the respective nodal value vectors ΦΦΦ and ΨΨΨ. ΨΨΨ are the design variables in the proposed method,
and these are bounded as follows:

−1 ≤ Ψi ≤ 1 for i = 1, . . . ,npsi (3)

where Ψi is the ith component of ΨΨΨ and npsi is the component number of ΨΨΨ.

4.2. State Variable Computation Using the Zero-level Boundary Tracking Mesh
As explained in Section 4.1, the material domain Ω is represented by ΦΦΦ in the discrete system. Then, the Eulerian
mesh that maintains ΦΦΦ does not conform to the zero iso-contour of the level-set function (hereafter, we call it the
zero-level boundary) in usual cases. Therefore, grayscale elements are yielded around the zero-level boundary
when the state variables are computed using the Eulerian mesh. To completely suppress such grayscale elements,
a mesh that accurately tracks the zero-level boundary is generated at every optimization iteration in the proposed
method. This zero-level boundary tracking mesh is generated by moving the nodes of the Eulerian mesh, and used
to compute the state variables. For the details of the mesh generation procedure, see Reference [7].

4.3. Sensitivity Analysis
In the proposed method, it is assumed that the objective and constraint functions are computed using the zero-level
boundary tracking mesh. On the other hand, the nodal level-set functions ΦΦΦ are maintained at each node of the
Eulerian mesh. Therefore, the relationship of sensitivities between the Eulerian and zero-level boundary tracking
meshes should be known to derive the sensitivities with respect to ΦΦΦ. Fortunately, this relationship has been clearly
given in Reference [7], therefore, the sensitivities with respect to ΦΦΦ can be successfully derived if the sensitivities
with respect to the nodal coordinates of the zero-level boundary tracking mesh. Furthermore, the sensitivities with
respect to the design variables, i.e., ΨΨΨ can be clearly derived using the sensitivities with respect to ΦΦΦ as shown in
Reference [7].

As a result, the sensitivities with respect to the design variables are derived using the framework proposed in
Reference [7], if the sensitivities with respect to the nodal coordinates of the zero-level boundary tracking mesh
are derived.

4.4. Double-well Potential Based Regularization
In the proposed method, a double-well potential based regularization technique is used to regularize the structural
optimization problem. That is, the structural optimization problem is formulated as follows:

minimize
ΨΨΨ

f0 +w freg,

subject to fi ≤ fi max, for i = 1, . . . ,ncns, (4)

where f0 is the original objective function, fi and fi max are, respectively, the ith constraint function and the cor-
responding allowable upper limit, ncns is the number of constraints, and w is the weighting coefficient. freg is the
double-well potential based regularization term that is computed with the Eulerian mesh as follows:

freg =
nD∪

e=1

∫
V e

(
(ϕ ∗)2 −1

)2
dv, (5)

where
∫

V e dv represents the volume integral in an element, ϕ ∗ is the level-set function in that element, and
∪nD

e=1
represents the union set of the elements in D. Because of the regularization term freg, the level-set function tends
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Figure 1: Analysis models: (a) minimum compliance problem; and (b) invehicle reactor design problem.

to move 1 or -1 except around the zero-level boundary.

4.5. Optimization Flow
On the basis of the discussions in Sections 4.1, 4.2, 4.3, and 4.4, the optimization flow of the proposed method is
described as follows:

(i) Provide an Eulerian mesh and initialize the design variables ΨΨΨ.

(ii) Compute the nodal level-set functions, i.e., ΦΦΦ, by solving Equation (2) in the discrete system.

(iii) Generate the zero-level boundary tracking mesh as explained in Section 4.2.

(iv) Compute fi with the zero-level boundary tracking mesh while computing freg with the Eulerian mesh.

(v) Terminate the optimization successfully if the termination condition is satisfied.

(vi) Compute the sensitivities with respect to ΦΦΦ and ΨΨΨ as explained in Section 4.3.

(vii) Update the design variables using nonlinear programming to solve the optimization problem formulated in
Equation (4), and return to (ii).

Note that, the proposed method assumes the Eulerian mesh consisting of linear triangular elements because of the
mesh generation procedure.

As explained in Section 4.3, the sensitivities with respect to the nodal coordinates of the zero-level boundary
tracking mesh must be derived for applying the proposed method to respective structural design problems. We
derive them in the next section.

5. Applications to Several Design Problems

5.1. Minimum Compliance Problem
In the minimum compliance problem, we assume a two-dimensional analysis model shown in Figure 1(a). As
shown in this figure, the design domain D is displayed in gray, a surface load t is applied in a part of the boundary,
and the displacement is fixed on a part of the boundary. Then, our objective is minimizing the mean compliance
while constraining the volume of the structure. That is, f0 and f1 in Equation (4) are computed with the zero-level
boundary tracking mesh as follows:

f0 = U⊤T, (6)

f1 =
nΩ∪

e=1

∫
V e

dv, (7)

where
∪nΩ

e=1 represents the union set of the elements in Ω, U and T are, respectively, the discretized displacement
field and surface load. Furthermore, U is computed by solving the following equation:

T−KU = 0, (8)
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where K is the total stiffness matrix.
From Equations (6) and (8), we obtain

f0 = U⊤T+V⊤ {T−KU} , (9)

where V is the adjoint variable vector. Therefore, the sensitivities of f0 with respect to the nodal coordinates of the
zero-level boundary tracking mesh are derived as follows:

∂ f0

∂Xi
=

{
∂U
∂Xi

}⊤
T+V⊤

{
− ∂K

∂Xi
U−K

∂U
∂Xi

}
=−V⊤ ∂K

∂Xi
U, (10)

where Xi is the x coordinate of the ith node of the zero-level boundary tracking mesh, and V is the solution of the
following adjoint equation:

T−K⊤V = 0. (11)

By denoting the y coordinate of the ith node as Yi, the corresponding sensitivity is similarly derived as

∂ f0

∂Yi
=−V⊤ ∂K

∂Yi
U. (12)

The sensitivities of f1 with respect to the nodal coordinates of the zero-level boundary tracking mesh are simply
derived as

∂ f1

∂Xi
=

∂
∂Xi

{
nΩ∪

e=1

∫
V e

dv

}
,

∂ f1

∂Yi
=

∂
∂Yi

{
nΩ∪

e=1

∫
V e

dv

}
. (13)

By incorporating Equations (10), (12), and (13) into the topology optimization method explained in Section 4, we
can obtain the optimized structure that minimizes the mean compliance.

5.2. Invehicle Reactor Design Problem
Invehicle reactor is a component of the DC-DC converter, which is used in hybrid and electric vehicles. Because
the invehicle reactor contributes to performances of those vehicles, it is important to design superior invehicle
reactors. In this paper, we assume a two-dimensional analysis model shown in Figure 1(b). This analysis model
is a quarter model where the left and bottom edges are the symmetric boundaries. ΩA is the domain filled with
air, ΩF is the domain filled with ferrite, ΩC represents coils, and D is the design domain where ferrite and air are
distributed. Electric current density J is imposed in the coil domains ΩC.

Here, our objective is minimizing the eddy-current loss in the coils while maintaining sufficient inductance.
Then, f0 and f1 in Equation (4) are given as follows:

f0 = A⊤FA, (14)
f1 = A⊤G, (15)

where A is the discretized magnetic potential for computing the magnetic flux density (Bx,By), F is the matrix for
integrating B2

x +B2
y in ΩC, and G is the vector for integrating By on Γ1. A is computed by solving the following

equation:
HA+L = 0, (16)

where H is the magnetic stiffness matrix and L is the vector representing the imposed current. From Equations
(14) and (16), the sensitivity of f0 with respect to Xi is derived as

∂ f0

∂Xi
=

{
∂A
∂Xi

}⊤
FA+A⊤F

∂A
∂Xi

+V1
⊤
{

H
∂A
∂Xi

+
∂H
∂Xi

A
}

=

{
∂A
∂Xi

}⊤{
FA+F⊤A+H⊤V1

}
+V1

⊤ ∂H
∂Xi

A

= V1
⊤ ∂H

∂Xi
A, (17)

where the adjoint variable vector V1 is obtained by solving the following adjoint equation:

FA+F⊤A+H⊤V1 = 0. (18)
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Figure 2: Initial and Optimized structures: (a) minimum compliance problem; and (b) invehicle reactor design
problem.

Similarly, the sensitivity of f0 with respect to Yi is derived as

∂ f0

∂Yi
= V1

⊤ ∂H
∂Yi

A. (19)

From Equations (15) and (16), the sensitivities of f1 with respect to Xi and Yi are derived as

∂ f1

∂Xi
= V2

⊤ ∂H
∂Xi

A,
∂ f1

∂Yi
= V2

⊤ ∂H
∂Yi

A, (20)

where the adjoint variable vector V2 is obtained by solving the following adjoint equation:

G+H⊤V2 = 0. (21)

In the same manner as the minimum compliance problem, we can obtain optimized invehicle reactors by
incorporating Equations (17), (19), and (20) into the topology optimization method explained in Section 4.

6. Numerical Examples
In this section, we provide two numerical examples for the minimum compliance and invehicle reactor design
problems. First, we consider the analysis domain shown in Figure 1(a) for the minimum compliance problem. Its
total size is 0.75×0.5 and it is discretized with triangular elements whose maximum length is 0.005. The young’s
modulus and poisson’s ratio of the structural material are set to 1 and 0.3, respectively. The surface load t is set
to (0,−0.01). The parameter R in Equation (2) is set to 0.01. The maximum allowable volume, i.e., f1 max, is set
to 0.15. The optimizer is sequential linear programming (SLP) and its move limit is set to 0.05. On the above
problem settings, we provide the initial structure shown in Figure 2(a), and as a result of optimization, we obtain
the optimized structure shown in Figure 2(a) at iteration 493. Because the obtained optimized structure is very
similar to optimized structures obtained in many relevant studies, we consider that the application to the minimum
compliance problem is successfully achieved.

Next, we consider the analysis domain shown in Figure 1(b) for the invehicle reactor design problem. Its
total size is 0.08m×0.08m and it is discretized with triangular elements whose maximum length is 0.001m. The
relative permeability of ferrite is set to 150. The electric current density in the coils, i.e., J, is set to 3× 106 A

m2 .
The parameter R in Equation (2) is set to 0.002m. f1 max is set to −0.058T ·m, that is, the minimum allowable
magnetic flux through Γ1 is set to 0.058T ·m. The optimizer is SLP and its move limit is set to 0.05. On the
above problem settings, we provide the initial structure shown in Figure 2(b), and as a result of optimization, we
obtain the optimized structure shown in Figure 2(b) at iteration 109. Note that, ferrite distribution is displayed in
gray in Figure 2(b). As shown in Figure 2(b), left and right bottom parts are clipped in the optimized structure.
By eliminating ferrite in neighborhood of the coil domains ΩC, leakage flux in ΩC can be effectively decreased.
Furthermore, such elimination does not deteriorate the inductance so much. Because physically appropriate ferrite
distribution is obtained, we consider that the application to the invehicle reactor design problem is also successfully
achieved.

7. Conclusion
In this paper, we applied our previously proposed method to the minimum compliance and invehicle reactor design
problems. Our previously proposed method is a consistent grayscale-free topology optimization method and it is
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promising because of its grayscale-free property. Furthermore, because the optimization framework has already
been established, only the nodal coordinate sensitivities of the objective and constraint functions are required when
applying our previously proposed method to design problems in industry. To demonstrate the potential of our
previously proposed method, we investigated two applications, i.e., the applications to the minimum compliance
and invehicle reactor design problems. Especially, the invehicle reactor design problem is important in an industrial
view point because it is a great objective in industry to realize high performance hybrid and electric vehicles. As
shown in the numerical examples, physically valid optimized structures were obtained in both two design problems,
therefore, we consider that the applications to these design problems are successfully achieved. In future works,
we will investigate applications to further design problems in industry and propose functional structures which
have superior performances.
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