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1. Abstract  
The present paper aims to address a long-standing and challenging problem in structural topology optimization: 
explicit feature control of the optimal topology. The basic idea is to introduce feature control constraints which are 
closely related to structural skeleton, which is a key concept in mathematical morphology and a powerful tool for 
describing structural topologies. Benefit from the ability of structural skeleton in geometrical and topological 
properties of the shape, the feature control constraints can be represented as local and explicit scheme without any 
post-processing. To illustrate the effectiveness of the proposed approach, the feature control problem is solved 
under level set and SIMP framework, respectively. Numerical examples show that the proposed approach does 
have the capability to give a complete control of the feature size of an optimal structure in an explicit and local 
way. 
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3. Introduction 
Topology optimization of continuum structures, which is, in its mathematically nature, a discrete optimal control 
problem of the coefficients of partial differential equations in infinite dimensional space, is the most challenging 
structural optimization problem [1].  
One long standing problem in structural topology optimization, which is closely related to regularization, is feature 
control of optimal structural topology [2-6]. More recently, Guo and Zhang et al.[7,8] proposed two explicit and 
local approaches for feature control in optimal topology designs. 
In the present paper, we intend to discuss how to carry out local and explicit feature control in structural topology 
optimization under level-set and SIMP-based computational framework, respectively.  
 
4. Mathematical foundation 
In order to give a precise feature control of a structure, it is necessary to define the minimum/maximum length 
scale in a mathematical rigorous way. In the following, this will be achieved by introducing the concept of 
structural skeleton of a given structure. 
Definition 1. The minimum/maximum length scale of a structure under level set framework 
In the present paper, the minimum length scale of a domain Ω is defined as 

  
  

where  is the set of closest points of  on  and  denotes 
the line segment with two end points   and , respectively.  is the medial surface of a closed and bounded 
domain . Accordingly, the maximum length scale of a domain  is defined as 

  
  

Under level set framework and based on the above definitions, we have the following propositions which 
constitute the mathematical foundation of the proposed approach. 
Proposition 1. If  then  
Proposition 2. If  then  
Here,  is the so-called signed distance level set function.  
Based on the above definitions and propositions, it becomes clear that the minimum and maximum length scale of 
a domain  can be completely controlled by imposing lower and upper bounds on the values of its signed distance 
function associated with the points in . 
Definition 2. The minimum/maximum length scale of a structure under SIMP framework 
In order to differentiate between level set and SIMP description, the structural skeleton is defined as  under 
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SIMP framework. Then the minimum length scale  and maximum length scale  of  can be 
defined as 

 
and 

  
 

respectively, where  is defined as 

 
  

In Eq.(3),  denotes a closed ball centered at  with radius . 
If the topology of a structure can be represented by a binary bitmap, numerous well established image processing 
techniques can be employed to extract its skeleton.  
 
5. Problem formulation with feature control 

Armed with above facts, the following problem formulation is proposed for topology optimization of 
continuum structures with feature control under level set-based framework: 

Find   
 

s.t. 

 

     
 
 

  
 

In Eq. (6),  is a prescribed design domain in which optimal material distribution is sought for.  and  denote the 
body force density in D and the traction force on Neumann boundary , respectively.  is the prescribed 
displacement on Dirichlet boundary The symbol  denotes the second order linear strain tensor. 

 (  and  denote the fourth and second order identity tensor, 
respectively) is the fourth order isotropic elasticity tensor of the solid material with  and  denoting the 
corresponding Young’s modulus and Poisson’s ratio, respectively.  and  are the displacement field and the 
corresponding test function defined on  with  The function  is such that 

  and  are the objective functional and prescribed upper 
bound of the solid material. They are all functional of  and  As discussed in the previous section, the 
constraints imposed on the signed distance  play the role of feature control. With use of these constraints, the 
minimum and maximum length scales of the obtained structure will be greater than  and less than  
respectively. 
In the SIMP framework, the optimization problem can be formulated as follows: 

 Find   
Min  
s.t.  

 

  

 

 
      

 
In Eq. (7),  is the vector of the design variables with  and  denoting the density and volume of the i-th 
element. The symbol  denotes the total number of finite element used for discretizing the prescribed design 
domain .  (  is the penalization index and  is adopted in the present study) is the global 
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stiffness matrix with  representing the element stiffness matrix corresponding to   is the lower 
bound of the element density.  and  are the minimum and maximum length scale constraint, 
respectively.  and  are the external load and the displacement field, respectively. In Eq. (3.1),  and  are 
two index sets such that 

 
and 

 
 

respectively. 
 

6. Numerical solution aspects 
In this section, numerical solution aspects of the proposed method will be discussed in detail. 
 
4.1. The Identification of  and  
From the above discussions, it is obvious that the key point for solving the optimization problem in Eq. (6) and (7) 
is to identify the medial surface of  i.e,  and .   In the present work, as suggested in [9], the 
following approximated Laplacian and then a line sweeping algorithm are applied to  sequentially to identify 
the points in  approximately as  

 
with 

  
 

Taking the possible numerical error into consideration,  defined as 

  
 

where  is a small positive number, is used in numerical implementation to guarantee the robustness of the solution 
process. In fact,  constitutes a narrow band around  
In SIMP framework, we propose to introduce the following projection operator to transform the gray-valued 
density field (i.e., ) into a pure black-and-white density field (i.e., ) used for extracting the structural 
skeleton: 

 
 

where  is a threshold value for density projection. In the present work, we will make use of Otsu method [10] to 
determine  in every optimization step adaptively in order to avoid misrecognition. Once the binary density field is 
identified, the iterative skeleton algorithm [11] can be adopted to identify the structural skeleton. 
 
4.1. The sensitivity analysis 
In Eq.(6), the existence of a large number of point-wise feature control constraints makes the direct solution 
approaches computationally intractable. In the present paper, the technique proposed in [12] is employed to 
transfer the local feature control constraints into a global one in a mathematically equivalent way. This can be 
achieved as follows. By defining 

 
 with 

  
 

The basic assumptions behind shape sensitivity analysis are such that both  and  are spatial invariant, i.e., 
 and  It is also assumed that on  as well as the part of the Neumann boundary  where 

 are non-designable. For , we have 
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where  and  are the outward normal vector and curvature of  respectively. In Eq. (18),   is 
the outward normal velocity of  

Since 

 
 

where 

 
 

Since  and  we finally arrive at the result that 

 

 

  
 

At this position, it is worthy of noting that  is not an independent quantity that can be chosen freely. In fact, it 
is dependent on  in an implicit way. Therefore, it is somewhat difficult to determine the descent ensuring 
velocity field of  or  in the same way as in traditional level set methods. In our numerical implementation,  
is employed to control the minimum structural feature length scale. Under this circumstance, by neglecting the 
second term in Eq.(20). Numerical experiments showed that the above treatment is effective to deal with the 
feature control constraints. 
The velocity fields associated with  is only defined on  which is only a subset of  (i.e., 

). The evolution of , however, requires the velocity field on all points in  In the present 
study, the PDE-based velocity extension method proposed is employed to extend the velocity fields associated 
with  defined primarily on  to   
Under SIMP framework, by assuming that the index sets  and , do not change before and after the 
perturbations of design variables, it holds that  and 

 respectively. 
 
7. Numerical examples 
In this section, the proposed approach is applied to several benchmark examples of topology optimization to 
illustrate its effectiveness for feature control. In the following tested examples, the Young’s modulus and 
Poisson’s ratio of the solid material are taken as  and  respectively unless otherwise stated. Under 
SIMP framework, the lower bound of the density variable is  in numerical implementation. Unless 
otherwise stated, the relaxation parameters  and  are set to be  initially and reduced to 1 within 20 iterative 
steps. 
First，we test the feature control capability of Eq.(6) under level set framework. As shown in Fig. 1, the design 
domain is 2 1 rectangular sheet with its left side clamped. A unit vertical load is applied at the middle point of the 
right side of the sheet. The design domain is discretized by an 120 60 FEM mesh. 
The structure is optimized to minimize the mean compliance of the structure under the available solid material 
constraint  The parameters for the feature controlled optimization are  

 and  respectively. Fig. 2 shows the optimal topologies without and with feature 
control constraints. The obtained numerical results indicate that the proposed approach does have the capability of 
complete feature size control and the optimal solution obtained with feature size constraints may be quite different 
from that obtained without considering feature size constraints. The value of the objective functional of the feature 
controlled optimal design is  with solid volume  while the corresponding values of the no 
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controlled design are  and  respectively. 
 

  

120 × 60  mesh 
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Fig. 1  The design domain of the short beam example 
 

 
     

 
(a)                                                       (b) 

 
Fig.2. The optimal design of the short beam example： 

(a) without feature control (b) with feature control 
 
Under SIMP framework, the heat conduction problem shown in Fig. 3, where the objective is to maximize the heat 
transfer capacity, is examined under minimum length scale control constraint. The design domain where 
distributed unit thermal loading uniformly applied is discretized with a  FEM mesh and the temperature 
of left-middle side is set to 0, as shown in Fig. 3. When the upper bound of the available solid material volume is 

 the optimized structure without length scale constraints is shown in Fig. 4a. It can be seen that this 
optimal design is unfavorable for manufacturing due to the existence of a large number of fins with small 
thickness. Next, the same problem is reconsidered with length scale constraint being taken into consideration. It is 
required that the minimum length scale of the thermal fins should be greater than . The 
optimized design and the corresponding structural skeleton are shown in Fig. 4b. From Fig. 4b, it can be seen that 
compared with the design shown in Fig. 4a, several main heat transfer paths are still retained in the optimal design 
subjected to length scale constraint. However, the fins with small widths have been eliminated. The optimal design 
shown in Fig. 4b is more reasonable from manufacturability point of view. Accordingly, the value of the objective 
function has been decreased from 186.63 to 133.35, due to the existence of length scale constraint. 
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Fig. 3  The design domain of the heat conduction example. 
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(a)                                               (b) 
 

Fig. 4 The optimized design of the heat conduction problem: 
(a)without feature control (b) with with control 

 
8. Concluding remarks  
In the present paper, two problem formulations and the corresponding numerical solution algorithm for feature 
control in optimal topology designs are proposed under level set framework and SIMP framework, respectively. 
Our methods are established based on the concept of structural skeleton, which has been well addressed in the field 
of image processing. Compared with the existing feature control approaches, the advantages of the proposed 
methods are such that they are local and explicit feature control schemes without resorting to any post-processing 
or continuation treatment. Numerical examples show that the proposed methods can give a complete (i.e., 
minimum and maximum length scales) control of the feature sizes in the optimized structures. 
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