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Abstract  

In simulation-based design optimization, one of the greatest challenges is the intensive computing burden. In order 

to reduce the computational time, a parallel implementation of the particle swarm optimization (PSO) algorithm on 

graphic processing unit (GPU) is presented in this paper. Instead of executed on the central processing unit (CPU) 

in a serial manner, the PSO algorithm is executed in parallel taking advantage of the general-purpose computing 

ability of GPU in the platform of compute unified device architecture (CUDA). The processes of the fitness 

evaluation, the updating of velocity and position of all the particles of PSO are parallelized and respectively 

introduced in detail. Comparative studies on optimization of three benchmark test functions are conducted by 

running the PSO algorithm on GPU (GPU-PSO) as well as CPU (CPU- PSO), respectively. The impact of design 

dimension, as well as the number of particles and optimization iteration in PSO on the computational time is 

investigated. From test results, it is observed that the computational time of GPU-PSO is much shorter compared to 

that of CPU- PSO, which demonstrates the remarkable speedup capability of GPU-PSO. Finally, GPU-PSO is 

applied to a practical gliding trajectory optimization problem to reduce the computing time, which further 

demonstrates the effectiveness of GPU-PSO. 
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1. Introduction 

Particle swarm optimization (PSO) developed by Kennedy et. al. in 1995 is an intelligent random global 

optimization algorithm inspired by the social behaviour of bird flocking or fish schooling [1]. In PSO, each particle 

in the swarm adjusts its position in the search space based on the best position it has found so far as well as the 

position of the known best-fit particle of the entire swarm, and finally converges to the global best point in the 

whole search space. Due to its easy implementation and competitive performances, the PSO algorithm has been 

extensively applied to optimization of very complex functions in a wide range of applications [2]. However, since 

the optimizing process of PSO requires a large number of fitness evaluations in the whole search space, it takes a 

long time for PSO to find optimal solutions especially for problems with high dimension or that needs a large 

swarm population for search. This becomes more serious when the performance functions are highly 

computational expensive. Traditionally, the fitness evaluations in PSO are done in a sequential way on the central 

processing unit (CPU). Thus, the computing speed of PSO may be quite slow for practical applications.  

At present, it is difficult to improve the computing speed of PSO from the viewpoint of algorithm. Meanwhile, 

it may reduce the computing accuracy. As a traditional graphics-centric workshop, the graphics processing unit 

(GPU) shows faster float-point operation and higher memory bandwidth in scientific computing fields compared 

to CPU [3]. Through integrating CPU and GPU and taking advantages of both, the heterogeneous computing 

technique has become a research focus for computational speedup in recent years. The compute unified device 

architecture (CUDA) developed by NVIDIA corporation is a famous platform for heterogeneous computing, 

which has greatly simplified programming on GPU and been applied to lots of general computing [4]. In order to 

reduce the computational time of PSO, a parallel implementation of the PSO algorithm based on GPU in CUDA is 

developed, named as GPU-PSO for short in this paper, which  greatly speeds up the computing.  

 

2. Review of PSO 

PSO is a stochastic global optimization technique inspired by the social behaviour of bird flocking or fish 

schooling. With PSO, each particle in the swarm adjusts its position in the search space based on its best position 

found so far as well as the position of the known best-fit particle of the entire swarm, and finally converges to the 

global best point. The search of the whole design space is done by a swarm with a specific number of particles. 

During each of the optimization iteration, the position and velocity of each particle are both updated according to 

its current best position (  gDbP t ) and best position of the entire swarm (  pDbP t ).  The position 
ijX  and velocity 

ijV  of each particle on one dimension are updated as follows: 
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where n is the number of particles in the swarm; d is the optimization dimension; c1 and c2 are learning factors, 

which are non-negative constants; r1 and r2 are random numbers uniformly located in the interval [0, 1]; w is the 

inertia weight used to balance the global and local search abilities of PSO, which is a constant lies between 0 and 1; 

max max[ ]ijV V V  ， is the velocity on the j
th

 dimension of the i
th

 particle with Vmax as a constant pre-specified 

according to the objective function. If
mij axV V , it will be set as 

maxijV V or
maxijV V  . The convergence rate is 

impacted by Vmax, which can avoid premature of PSO. The general procedure of the PSO algorithm is described 

step by step in Figure 1 as below.  

Initialize position Xt and velocities Vt

Evaluate fitness F(Xt)

Update PpDb(t)

Update PgDb(t)

Compute velocity V(t+1)

Compute position X(t)

Terminate?

Result

yes

no

 

Figure 1: Flowchart of the particle swarm optimization algorithm 

 

3. Introduction of GPU based parallel computing 

GPU was originally designed especially for the purpose of image and graphic processing on computers, where 

computational intensive and highly parallel computing is required. It has been reported that the floating-point 

computation speed is 10 times of CPU, and the memory bandwidth is 5 times of the general memory compared to 

the cotemporary CPU [3]. Therefore, the GPU has been widely applied to general-purpose computing, such as 

scientific computation, fluid mechanics simulation, molecular mechanics computation etc. [5-6]. 
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Figure 2: Memory Model of CUDA [7] 

CUDA is a parallel computing platform based on the SIMD (Single Instruction, Multiple Data) [4]. The 

memory model of CUDA is depicted in Figure 2, in which threads are divided into three levels: thread, block and 

grid. Each thread and block has its unique index. Each thread has a small and fast private register, while each block 

has a faster shared memory. The operation of memory read and write can be done by all threads in the 

same block.  Both global memory and constant memory existing in grid are visible to all threads. 

As an extended library in the environment of C/C++, CUDA C/C++ greatly facilitates the fast coding of kernel 

function running on GPU of NVIDIA for developers. Through calling the kernel function by CPU, the program 

can be run on the GPU parallelly. The program execution process of CUDA is divided into three steps: copy data to 
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GPU, execute kernel function and copy data to CPU. 

 

4. GPU-Based PSO 

Clearly, the evaluation of fitness function and updating of each particle in PSO is independent to each other. 

Therefore, PSO has the basic architecture of parallel computing. The whole process of parallel computing can be 

achieved through the one-one correspondence between each particle in PSO and the thread of GPU. The detailed 

procedure is: (1) thread is set on GPU with the same number as that of particles; (2) storage space is set up for each 

particle to store its velocity, position and other related data; (3) fitness evaluation and updating for all the particles 

are done simultaneously using GPU. Here, the execution model for position updating of particle in Figure 3 is used 

as a demonstration to show the parallel computing procedure of PSO. For the parallel computing of velocity 

updating and fitness evaluation, the procedure is the basically same. 

In Figure 3, each block contains (Nb+1) thread. The smallest unit in CUDA is half-warp (16 threads). Therefore, 

(Nb+1) is generally set as the integer multiple of 16. Pid is the index number of thread, i.e. the serial number of each 

particle in PSO. n is the total number of particles, d is the optimization dimension. Nt is the total number of thread 

block, which is determined by  1 /b bt N NN n   . 

0 1 … Nb … 0 1 … Nb

//kernel:Update Position
int Pid=blockIdx.x*blockDim*x+threadIdx.x;
if(Pid<n)
{
  for(int i=0;i<d;i++)
  X[Pid+i*n]=X[Pid+i*n]+V[Pid+i*n];
}

The particle position global array

Block0 Block Nt-1

 

Figure 3: The execution model based on CUDA 

Based on the procedure of PSO and the parallel scenario introduced above, GPU-PSO is established, of which 

the flowchart is illustrated in Figure 4. Clearly, the processes of initiation, updating and fitness evaluation are all 

paralleled, of which the fitness evaluation is the prime component for parallelization. 
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Figure 4: Flowchart of GPU-PSO 

5. Comparative studies 

In this section, four commonly used functions listed in Table 1 are used to verify the effectiveness of the 

developed PSO-GPU. The PSO algorithm without parallel computing (CPU-PSO) is also employed to optimize 

these functions. The speedup ratio sp of GPU-PSO is calculated by taking the ratio of the computational time cput of 

CPU-PSO and gput of GPU-PSO. 

All the parameters in PSO are set as follows as is commonly done in practice: the inertia weight 0.7298w  , 

learning factor
1 2 2.05c c  , velocity of updating particle is the right bound of each function. In order to 
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effectively investigate the speedup capability of GPU-PSO over CPU-PSO, the convergent criterion is set as that 

when the number of optimization iterations reaches 5000, the optimization is stopped. The design dimension is set 

as d=50 for all the four functions, and different number of particles n are tested to investigate its impact on the 

speed-up ratio. The computational environment employed in this work is shown as Table 2. 

Table 1: Test functions 

Names Functions 

Sphere 
2

1

1

, 100 100
d

i i

i

f x x

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Rosenbrock  2

2

1

10cos 2 100 , 10 10
d

i i i

i

f x x x

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Griewank  2

3

1 1

1
cos 1, 600 600
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dd

i i i

i k

f x x i x
 

        

Ackley        2

4

1 1

20*exp 0.2* 1 * exp 1 * cos 2 exp 1 20, 8 8
d d

i i i

i i

f sqrt d x d x x
 

       
                

       
   

Table 2: The computational environment 

CPU Intel i7-4770k 

GPU NVIDIA GTX TITAN BLACK 

Memory 16G 

OS Windows 7 X64 

Platform Visual Studio 2013，CUDA6.5 

 

Table 3: The results of Sphere function (d=50) Table 4: The results of Rosenbrock function (d=50) 

n 
f*  t /s 

ps
 CPU GPU  CPU GPU 

1600 0.775 0.000  11.342 1.638 6.924 

2500 0.000 0.000  18.235 1.703 10.708 

3600 0.000 0.000  24.820 1.841 13.482 

4900 0.000 0.000  40.404 1.888 21.400 

6400 0.000 0.000  59.657 1.950 30.593 
 

n 
f*  t /s 

ps
 CPU GPU  CPU GPU 

1600 1.636 11.851  11.996 1.638 7.324 

2500 33.599 5.272  21.606 1.716 12.591 

3600 48.648 3.988  26.645 1.825 14.600 

4900 30.998 2.679  42.295 1.918 22.052 

6400 32.283 0.080  61.261 1.966 31.460 
 

 

Table 5: The results of Griewank function (d=50) Table 6: The results of Ackley function (d=50) 

n 
f*  t /s 

ps
 CPU GPU  CPU GPU 

1600 0.693 0.000  42.323 1.935 21.872 

2500 0.000 0.000  66.628 1.747 38.139 

3600 0.000 0.000  98.093 1.872 52.400 

4900 0.000 0.000  141.198 1.950 72.409 

6400 0.000 0.000  193.207 1.950 99.081 
 

n 
f*  t /s 

ps
 CPU GPU  CPU GPU 

1600 0.031 0.000  43.025 1.310 32.844 

2500 0.000 0.000  75.536 1.342 56.281 

3600 0.000 0.000  98.186 1.389 70.688 

4900 0.000 0.000  143.191 1.435 99.7429 

6400 0.000 0.000  198.465 1.435 138.303 
 

 

Table 7: The results of Griewank function (d=100) 

 

Table 8: The results of Ackley function (d=100) 

n 
f*  t /s 

ps
 CPU GPU  CPU GPU 

1600 0.000 0.000  99.391 3.454 28.776 

2500 0.001 0.000  173.736 3.624 47.940 

3600 0.000 0.000  250.893 3.770 66.550 

4900 0.000 0.000  315.421 3.913 80.681 

6400 0.000 0.000  464.017 4.013 115.628 
 

n 
f*  t /s 

ps
 CPU GPU  CPU GPU 

1600 0.018 0.000  86.429 2.449 35.292 

2500 0.003 0.000  168.461 2.538 66.376 

3600 0.000 0.000  221.264 2.620 84.566 

4900 0.000 0.000  341.765 2.701 126.533 

6400 0.000 0.000  434.846 2.767 157.154 
 

 

The optimal objective function values (f*), the computing time (t) and the speedup ratio (sp) are listed in Tables 

3-8, from which it is clearly observed that the GPU-PSO runs much faster than CPU-PSO with very high speed-up 
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ratio. Meanwhile, the optimal solutions of GPU-PSO and CPU-PSO are basically the same, which show great 

agreements to the real optimal solutions (f=0), indicating the good convergence property of GPU-PSO. It is also 

noticed that the complexity of test functions has large impact on the speed-up ratio, which can be derived from the 

results in Tables 3-6. Clearly, from the Sphere to Ackley functions, the complexity is basically increasing, and the 

corresponding speed-up ratio is increasing as well. Meanwhile, the speed-up ratio is also increased with the 

increase of the number of particles n. This is self-evident since the evaluation of all particles are executed serially 

in CPU-PSO, thus more particles yields more computational time, while this is done all at once in GPU-PSO. 

However, once n reaches to a certain value, the speedup ratio is increased very slowly. The reason is that GPU only 

contains 2880 CUDA CORE. 

To further study the impact of design dimension on the speed-up ratio, d=100 are also tested. Considering the 

space limit, only results of the last two functions are shown (see Tables 7 and 8). It is found that for all the 

functions, the speed-up ratio with d=100 is larger than that with d=50, indicating that the speed-up ratio is 

improved with the increase of optimization dimension. It can be concluded that generally the higher of the 

dimension and the more of the particles, the larger of the speed-up ratio obtained by GPU-PSO. All these results 

demonstrate the effectiveness and good speed-up capability of GPU-PSO. 

 

6. Application of GPU-PSO to trajectory optimization 

6.1. Description of trajectory optimization 

Trajectory optimization of aerocraft is actually an optimal control problem, which is generally solved by the 

direct method [8]. As a traditional direct method, the direct shooting method is frequently used for solving 

practical trajectory optimization due to its simplicity and convenience. With this method, the optimal control is 

transcribed into a nonlinear programming problem (NLP) through parameterizing the control on certain time nodes 

and treated as design variables. For engineering applications, it is necessary to generate trajectory as fast as 

possible. However, oftentimes, a large number of discreted nodes are required to parameterize the control variable 

in order to ensure high accuracy especially for complex and long-time flight mission, which may increase the time 

of optimal trajectory generation. Therefore, GPU-PSO is applied to the glide trajectory optimization to save 

computational time. The optimal control of the glide trajectory optimal problem is formulated as [9]: 
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where , , ,V L h are respectively velocity, trajectory angle and height, with initial values as V0=542.725m/s,
°

0 10  , L0=0.0m and H0=28541m; , ,x yq C C are the dynamic pressure, drag coefficient and lift coefficient, 

respectively; S=0.126m
2 
is the reference area; g = 9.8m/s

2
 is the acceleration of gravity; m=210kg is the mass of 

vehicle. xC and yC are calculated using linear interpolation with respect to h, Ma and  . 

The design variable of the problem is the law of the angle of attack ( )t , which is constrained during flight due 

to the structural and control requirements. The objective function is to maximize the range of the vehicle )( fL 

without any power by control as much as possible. The terminal boundary constraint is   100fh m  , i.e. the flight 

task is completed when the flight height is less than 100m. The direct shooting method is employed to solve the 

gliding trajectory optimization in Eq. (2) and GPU-PSO is employed to solve the transcribed NLP. The flight time 

0[ , ]f  is divided into N sub-intervals as 0 1 1N N f         . Correspondingly, the angle of attack ( )t is 

discreted at the N+1discreted time nodes as
0 1 1, , , ,..., ,i N N     . The control variable ( )t at anytime point is 

predicted by the spine interpolation over the N+1 discreted time nodes and the corresponding angle of attack. 

Clearly, the flight time 
f is unknown. In this work, it is not considered as a design variable, and is only used for 

the calculation of trajectory and interpolation of angle of attack. If the flight time
f  , then  

f
   . 

 

6.2. Results 
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For this problem, the optimization process is terminated when the variation of the maximum flight range is less 

than 0.01m. The number of particles is set as n=10000 and d=51 (N=50).The parameters in PSO are set as the same 

as those in the above four mathematical examples. The optimal angle of attack is shown in Figure 5. It is found that 

both methods yield almost the same optimal solutions, while GPU-PSO (1464.146s) needs much shorter time than 

CPU-PSO (9.064s), with about 161X speedup. The optimal angle of attack and range of GPU-PSO are slightly 

different from those of CPU-PSO, which is caused by the difference of the floating point computing method 

between CPU and GPU. This can be reduced and even eliminated by screwing up the code [10]. 

Although, the speed-up capability is remarkable, it is necessary to verify the accuracy of GPU-PSO. From the 

theory of lift-to-drag ratio, the maximum range can be approximately obtained when gliding with maximum 

lift-to-drag ratio [11]. Therefore, the trajectory with maximum lift-to-drag ratio is calculated by plugging different 

angle of attack   ° °1 ,...,10    into the dynamic model in Eq. (2) and Rung-Kutta numerical integration is used to 

obtain the lift-to-drag ratio and range. It is found that   °10    yields the largest lift-to-drag ratio, so as the range. 

Clearly, the optimal angle of attack by GPU-PSO is equal to 
°10 during almost the whole flight mission, which is 

basically the same as that derived from the lift-to-drag theory. The trajectories of   °10   , GPU-PSO and 

CPU-PSO are shown in Figure 6. It is noticed that the three trajectories are almost the same, yielding very similar 

range (129.02, 129.06 and 129.70km). These results demonstrate the effectiveness of GPU-PSO. 

 

Figure 5: The optimal    of both methods          Figure 6: Optimal trajectories 

 

7. Conclusions 

In this paper, based on the standard PSO algorithm, the parallel computing of PSO is developed using the GPU 

technique in the CUDA platform. Through the comparison of GPU-PSO and CPU-PSO by four mathematical 

functions, it is observed that the developed GPU-PSO can greatly save computational time, while yields good 

accuracy and convergence properties. The application of GPU-PSO to a glide trajectory optimization problem 

further demonstrates the effectiveness and advantage of GPU-PSO, as well as its great potential to practical 

engineering optimization.  
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