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1. Abstract  
Radial basis function neural network (RBFNN) has been widely used in nonlinear function approximation. In this 
paper, two limits of RBFNN have been handled which are network complexity and large-scale calculation 
respectively. Firstly, network complexity, which results from problems of numerous width parameters 
optimization, is solved by a method of space decomposition based on sensitivity analysis. If a dimension is more 
sensitive to approximation error, the design space along this dimension is decomposed into several subspaces and 
the width parameter in each subspace is regarded as an independent variable and optimized respectively. In this 
way, the number of width parameters to be optimized can be reduced while the flexibility of parameter settings is 
maintained, so that the approximation accuracy and modeling efficiency can be balanced. Secondly, large-scale 
calculations, which come from leave-one-out method for cross validation error estimation, are improved by 
adopting the Pareto law in economic science. According to the Pareto law, referred as “majority is decided by the 
minority”, we propose to choose only those sample points, which play dominant roles on the global errors, as cross 
validation points. Then large-scale calculations can be greatly reduced as the cross validation need not be 
conducted at those samples which have minor effects on the global errors. Combining the space decomposition and 
leave-one-out methods, the improved RBFNN modeling method based on sensitivity analysis and Pareto principle 
can effectively reduce the calculation costs and improves the accurate. Finally, several mathematical examples are 
tested to verify the efficacy of this method. 
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3. Introduction 
With the development of computer technology, numerical simulation has been playing an increasingly important 
role in modern engineering design, but the huge amount of calculation is always a barrier. In recent years, 
metamodel, also called response surface method, is found to be a valuable tool in simulation areas. A metamodel is 
an approximation to system response constructed from its value at a limited number of selected input values [1]. 
Because of its simplicity and accurate results, it is used to instead of complex and computationally expensive 
systems. 
The commonly used metamodels include Kriging, polynomial response surface model, support vector machine, 
radial basis function,  neural network model et al. As the combination of radial basis function and neural network, 
radial basis function neural network is not only simple but also accurate. It is one of the most suitable 
approximation methods in approximating high nonlinear systems [2]. Especially in modeling the deterministic 
computer experiment response data which are identical each time the simulation is repeated, the interpolation 
modeling feature of RBFNN is very feasible and applicable. In the classical interpolation form of RBFNN, the 
RBF centers of neurons in network hidden layer are the training sample data. The accuracy of the model directly 
depends on the selected basis functions and the training samples [3]. 
With an unknown system, an efficient method to improve the approximation quality is to increase the number of 
sample data, which is also the neuron number in hidden layer of the network. If the number is big, the network 
would be extremely complicated and the calculation efficiency would be influenced. Besides, every sample data 
needs to run the high fidelity model to obtain the system response. If the sample set is too large, the calculation 
burden may be unacceptable. In recent years, the commonly used method to improve the approximation quality is 
shape parameter optimization to instead of increasing the number of sample data. The present research on the 
shape parameter optimization mainly includes two categories:  
a) The shape parameters of all the RBF neurons are fixed to the same value with optimization methods. 
b) The shape parameters of all the RBF neurons are designed respectively with optimization methods. 
In the first category, the shape parameters of all the RBF neurons are set to be the same. It is much easier to design 
and optimize this single parameter, but this simplification may greatly limit the capability of RBFNN in complex 
highly nonlinear approximation problems. The second category designs and optimizes the shape parameter of each 
neuron respectively. Theoretically this method can find the best approximation model, but the giant calculation 
cost of each neuron optimization respectively may be unacceptable. 
In this paper, two limits of RBFNN have been handled which are network complexity and large-scale calculation 
respectively. Actually, network complexity is also the problem of large-scale calculation. Firstly, we propose a 
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new method of space decomposition based on sensitivity analysis to solve the problem of network complexity, 
which results from problems of numerous width parameters optimization. In this way, the number of width 
parameters to be optimized can be reduced while the flexibility of parameter settings is maintained, so that the 
approximation accuracy and modeling efficiency can be balanced. Secondly, we improved the traditional 
leave-one-out method for cross validation error estimation by adopting the Pareto law, to solve the problem of 
large-scale calculations. In this way, large-scale calculations can be greatly reduced. Combining the space 
decomposition and leave-one-out methods, the improved RBFNN modeling method based on sensitivity analysis 
and Pareto principle can effectively reduce the calculation costs and improves the accurate. Finally, several 
mathematical examples are taken to verify the proposed method, and the results are discussed. 
 
4. RBFNN based on sensitivity analysis and Pareto law 
 
4.1. RBF neural network 
Radial basis function neural network is essentially an interpolation method. In classical RBFNN model, the 
approximation response is defined as a linear combination of radial functions. The approximation response 
expression is as follows, 
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Ns is the number of hidden layer neurons, which is also the number of sample points. xi is the sample point, and wi 
is the output layer weight. iφ  is the radial basis function of the Euclidean distance 

ix x− . ŷ  is the 

approximation response at the unknown point x. 
The output weighs constitute a vector W=[w1,w2,…,wNs]T, and the radial basis functions constitute a vector 

T
1 1 2 2( ) [ ( ), ( ), , ( )]Ns Nsx x x x x x xϕ φ φ φ= − − − . Eq.(1) can be written as 

 Tˆ ( )y W xϕ= ⋅  (2) 

The weight vector W can be obtained from 

 1W Y−=Φ  (3) 

The accurate responses of sample points constitute the vector T
1 2[ , , , ]NsY y y y= . The expression of matrix Φ  

can be written as 
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The radial basis function ( )iφ ⋅  has many forms such as the Gaussian function, the thin-plate-spline function, the 
multi-quadric function, etc.[4, 5]. As the theoretical investigation and practical results suggest that multi-quadric 
function has a high rate of convergence [6, 7], in this paper we choose multi-quadric function as basis function. We 
use ri substituting the Euclidean distance 

ix x− , then the radial basis function can be written as 

 2 2
i i ir cφ = +  (5) 

ci is constant number of each neuron. Because the shape characteristic of basis function is decided by ci, we call ci 
the shape parameter. 
 
4.2. Space decomposition base on sensitivity analysis 
To obtain the high approximation accuracy, we usually choose the second category of shape parameter 
optimization stated in section 3, but the expensive computational cost is a barrier. To improve the computational 
efficiency in solving the shape parameter optimization problem, a method of space decomposition is proposed 
based on sensitivity analysis. We decompose the whole design space into several sub-spaces, and the shape 
parameter in each subspace is regarded as an independent variable and optimized respectively. In this way, the 
number of shape parameters to be optimized can be reduced. Therefore, the large-scale optimization problem is 
decomposed into several sub-problems, each of which has less optimization variables and smaller matrix to 
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manipulate. 
For a n-dimensional design space, a simple method to decompose the space is: if each dimension is divided into m 
parts equally, we can obtain mn sub-spaces. This method is simple and easy to operate, but it may encounter a 
problem, dimension disaster. For a 20-dimensional design space, we divide each dimension into 2 parts, then the 
design space is decomposed into 220 sub-spaces. The big number of sub-spaces makes it difficult to complete the 
computation. 
Sensitivity analysis is the study of how the change in the output of a mathematical model or system can be 
apportioned to different sources of change in its inputs. It is an important method to solve the complex problem in 
MDO. In this section, a practical approach of space decomposition is proposed based on sensitivity analysis. The 
basic idea of this method includes three parts: 
a)  Analyze the sensitivity of each dimension respectively, and arrange these dimensions according to the impact 
on system in an order from largest to smallest. 
b)  If a dimension is more sensitive to approximation error, we insist that change in this dimension has larger 
influence to system. Select k dimensions which have largest impact on the system, and divide these dimensions 
into m parts respectively. Then the design space is decomposed into mk sub-spaces and the shape parameter in each 
subspace is regarded as an independent variable and optimized respectively. 
c)  If a dimension is less sensitive to approximation error, we insist that change in this dimension has little influence 
to system. Therefore, measures are not taken to this dimension. 
For a 20-dimensional design space, we divide each dimension into 2 parts, then the design space is decomposed 
into 220 sub-spaces. The big number of sub-spaces makes it difficult to complete the computation. 
 
4.3. Leave-one-out method based on Pareto law 
Leave-one-out method is a cross validation method of estimating the approximation model prediction error. The 
basic ideas of this method are as follows: 
a)  For a sample set X=[x1,x2,…,xNs]T, leave out one sample point (1 )ix i Ns≤ ≤ , and construct metamodel based on 
the rest of the sample points X-i=[ x1,x2,…,xi-1,xi+1,…,xNs]T. 
b)  Use this metamodel to predict the response on the leave-out point ˆiy . 
c)  Calculate the difference e-i between the prediction ˆiy  and the accurate response yi. 
Generally speaking, we use RMSE (root of mean square errors) to estimate the global error of metamodel. The 
RMSE is calculated by the following equation: 
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Where Ns is the number of sample points, ˆiy  and yi are the predicted response and accurate response. The smaller 
the value of RMSE, the better accurate the metamodel will be. 
By optimizing Eq.(6), the smallest value of RMSE can be found. But the drawback of this optimization based on 
leave-one-out is large-scale calculations. It will take much time to build the leave one out metamodel for cross 
validation of every point in the sample set, especially for RBFNN which needs large matrix calculation. To save 
cross validation time and calculation cost, we improve the leave-one-out method by Pareto law, which only use 
part of the sample data as the key points to conduct cross validation and build the global error prediction 
metamodel. 
The Pareto law (also known as the law of vital few) states that, for many events, roughly 80% of the effects come 
from 20% of the causes. Therefore, many businesses have an easy access to dramatic improvements by focusing on 
the most effective areas and eliminating, ignoring the rest, as appropriate. 
According to the Pareto law, referred as“majority is decided by the minority”, we propose to choose only those 
sample points, which play dominant roles on the global errors, as cross validation points. Then large-scale 
calculations can be greatly reduced as the cross validation need not be conducted at those samples which have 
minor effects on the global errors. 
The leave-one-out method is improved by the Pareto law, and the main idea of this method is as follows: 
a)  Calculate the square errors 2 (1 )ie i Ns≤ ≤  based on the traditional leave-one-out method by the following 
equation, 

 22 ˆi i ie y y= −  (7) 

b) Rearrange the sample set X=[x1,x2,…,xNs]T, according to the value of 2 (1 )ie i Ns≤ ≤ in an order from largest to 
smallest. Then, we obtain the new sample set T

1 2[ , , , ]NsX x x xʹ′ ʹ′ ʹ′ ʹ′= . 
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c) It is obvious that, those points with larger square error have larger influence on the global error. Choose k points 
with larger square error as Pareto points from the new sample set X ʹ′  by the following program: 
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Where (0 1)µ µ< ≤ is a constant, we call it Pareto coefficient. We set it to 0.8. 
d) After determining the Pareto points, the RMSE is calculated by the following equation: 
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Where ˆiyʹ′  and iyʹ′  are the predicted value and accurate value on the point ixʹ′ . 
 
4.4. The method of SAPRBFNN 
Combining the space decomposition and leave-one-out methods, the RBFNN modeling method based on 
sensitivity analysis and Pareto principle (SAPRBFNN) is proposed. The flowchart of SAPRBFNN is shown in 
Fig.1. 
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Figure 1: SAPRBFNN modeling flowchart 
 

The proposed method mainly includes the following parts: 
a)  Collection of sample points. In this paper, an optimum Latin hypercube design method is utilized to construct 
the uniformly distributed sample points filling the design space. 
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b)  Sensitivity analysis. Analyze the sensitivity of each dimension respectively, and arrange these dimensions 
according to the impact on system in an order from largest to smallest. 
c)  Space decomposition. Select k dimensions which have largest impact on the system, and divide these 
dimensions into m parts respectively. Then the design space is decomposed into mk sub-spaces and the shape 
parameter in each subspace is regarded as an independent variable and optimized respectively. 
d)  Construct metamodel in each sub-space respectively. 
e)  Optimize shape parameters based on Pareto law. Determine the Pareto points of each sub-space, and then 
calculate RMSE by Eq.(9). The shape parameter in each subspace is regarded as an independent variable and 
optimized respectively. 
f)  Judge the convergence of the optimization. When RMSE reaches the required accuracy threshold, the 
optimization process terminates. 
 
5. Tests of SAPRBFNN 
Now we will test SAPRBFNN using Camelback function and a 7-dimensional function. All the two functions are 
constructed through optimum Latin hypercube design sampling strategy. 
 
5.1. Camelback function 

 2 4 2 2 2
1 2 1 1 1 1 2 2 2 1 2( , ) (4 2.1 / 3) (4 4) , [ 1,1], [ 1,1]f x x x x x x x x x x x= − + + + −        ∈ − ∈ −  (10) 

The sample set is composed of 100 uniformly distributed points in the design space designed by optimum Latin 
hypercube design method. Comparing the traditional RBFNN and SAPRBFNN, and the results are shown in Fig. 2 
and Table 1. 

 
(a)Accurate function 

 
(b)RBFNN modeling result 

 
(c)SAPRBFNN modeling result 

 
Figure 2: Test result of Camelback function 

 
Table 1: Test result of Camelback function 

 

Method Shape parameter Percentage of 
validation points RMSE 

RBFNN       0.0451 

SAPRBFNN 

Subspace 1 
Subspace 2 
Subspace 3 
Subspace 4 

0.3189 
0.1046 
0.3305 
0.0098 

17% 
8% 

11% 
16% 

0.0460 

 
5.2. 7-dimensional function 

 
2 2 2 2

1 2 3 3 1 6 7
3 3 2 2
6 7 4 6 5 7

( ) 0.7854 (3.3333 14.9334 43.0934) 1.5079 ( )

7.477( ) 0.7854( ) 5i

f x x x x x x x x

x x x x x x x

= + − − + +

+ + +      ,   1≤ ≤
 (11) 

The sample set is composed of 300 uniformly distributed points in the design space designed by optimum Latin 
hypercube design method. Firstly, analyzing the sensitivity of this function. After the normalization process, the 
results of sensitivity analysis is depicted in Fig. 3. It is obvious that x2 and x3 are more sensitive than other variables. 
Therefore, these two dimensions is divided into 2 parts respectively. Then the design space is decomposed into 4 
sub-spaces. Comparing the traditional RBFNN and SAPRBFNN, and the results are shown in Table 2. 
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Figure 3: Sensitivity analysis 
 

Table 2: Test result of 7-dimensional function 
 

Method Shape parameter Percentage of 
validation points RMSE 

RBFNN       93.7760 

SAPRBFNN 

Subspace 1 
Subspace 2 
Subspace 3 
Subspace 4 

0.2886 
0.5836 
1.0060 
0.0198 

18% 
20% 
19% 
19% 

97.2409 

 
6. Discussions and conclusions 
From Camelback function, the number of shape parameters is decreased from 100 to 4, and the percentage of 
validation points (Pareto points) in all sample points is less than 20%. As the Fig. 3 shows, the accuracy remains 
almost the same with the traditional RBFNN. The RMSE test also supports the judgment. For 7-dimensional 
function, we can draw the same conclusion.  
In this paper, two limits of RBFNN have been handled which are network complexity and large-scale calculation. 
Firstly, a method of space decomposition based on sensitivity analysis is proposed to solve network complexity, 
which results from problems of numerous width parameters optimization. In this way, the number of width 
parameters to be optimized can be reduced while the flexibility of parameter settings is maintained, so that the 
approximation accuracy and modeling efficiency can be balanced. Secondly, the leave-one-out is improved by 
Pareto law to solve the problem of large-scale calculations, which come from cross validation error estimation. 
Then large-scale calculations can be greatly reduced as the cross validation need not be conducted at those samples 
which have minor effects on the global errors. The results of the benchmark functions show that, the proposed 
SAPRBFNN which combining the space decomposition based on sensitivity analysis and leave-one-out based on 
Pareto law can effectively reduce the calculation costs. Most importantly, the accuracy remains almost the same 
with the traditional RBFNN. Further research of this method should be conducted in high dimensional problems 
and engineering application problems. 
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