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1. Abstract  
There are a lot of efficient methods in surrogate optimization. Convolute RBF is the one of them, and we have 
examined its effectiveness for years. However, in most case, if the number of design variables raise and/or the 
searching range extended, they have some problems in approximating functions both in local accuracy and global 
trends. They have the same reason of sparseness of given data with respect to its searching range, and which 
happens by the nature of large scale optimization. In this study, zooming technique in approximation is proposed. 
When we have a certain amount of data, we can divide given datum into some parts and restrict its searching range 
to some small area. Then in each part, we can achieve more accuracy for local approximation. Moreover, if we can 
restrict searching range smaller, we have more possibilities to achieve global solution within given searching range. 
Besides, we can have local optima for each part, which can be candidates for true global solution in the future. In 
this paper, we examined effectiveness of the method through numerical example. 
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3. Introduction 
There are a lot of excellent studies on Surrogate Optimization. Kashiwamura, Shiratori and Yu had published 
response surface method by experimental design [1], in 1998. Todoroki and Ishikawa used D-Optimality in data 
distributions [2]. And Myers, Montgomery and Aderson-Cook’s book[3] was one of the most contributions in this 
area. They are all based on quadratic form. Well distribution of initial data for its approximation form. As for 
Meta-Modeling, Spline[4], Kriking[5], RBF network[6] and SVR[7] have been widely used to have a better 
approximations rather than quadratic form. Among all these studies, EGO[8] is one of the best contribution that it 
add strategy for global optimization especially in sampling of new data points. 
I have proposed parameter optimization in setting RBF[9], recommendation function for new data points[10], 
convolution of RBF[11,12], data distribution method, basis distribution method [13] and so on to have better 
efficiency in the past. 
In surrogate optimization, we already have amount of datum. Which means we can scope approximation around 
some data points; most likely the best solution data. When we can zoom the searching range, we may have the 
following advantages: 1) as the searching range shrinks, it makes easier to find make better approximation, 2) it 
makes easier to optimize surrogate function, and so on. 
In this paper, we are going to propose the method and examined its effectiveness through numerical example. 
 
4. Convolute RBF 
 
4.1. RBF networks 
When we think about approximation of function y(x) by linear summation of basis functions hi(x), approximate 
function f(x) can be expressed as follow. 
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In Eq.(1) we assume that we have m basis functions. When we have p teaching data, we can calculate energy of 
RBF as follow 
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Learning for RBF means trying to minimize energy in Eq.(2) with respect to weights of wj. Thus, we can have final 
solutions as follows. 
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4.2. Convolute RBF 
As a nature of RBF, it does not go through teaching data of y (xi). However, average of error that is given from y(x) 
and yapp(x) is almost always close to zero. Thus, we can approximate these errors again and again until we satisfy 
with the error. Thus convolute RBF (Arakawa 2007)can be expressed as follow 
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Example of convolute RBF can be seen in Fig.1. 
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Fig. 1 Convolute RBF 
 
4.3. Data Distribution 
For better approximation for over all region, we would like to distribute initial data as equal as possible. For that 
purpose, we use 2-norm as following steps. Assume we would like to have m data. 

1)   Distribute m x M candidate data randomly. 
2)   Choose data #1 which is close to average of all m x M data. 
3)   Choose data #2 that has maximum distance from data #1. (Currently, we have 2 decided data) 
4)   Find candidate that has maximum 2-norm. 

2-norm=minimum distance + second minimum distance 
 But, if minimum distance=0 then, 2-norm=0. 
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Figure 2 shows illustration of this method. At the beginning, we choose #1 as closest one to average. Then, we 
choose #2, that has maximum distance from #1. Then, #3 is chosen by calculating maximizing 2-norm between 
#1 and #2.  
 

 
Fig. 2 Illustration of 2-norm distribution 

 
4.4 Selection of Basis Center 
For ith convolution, estimate errors at teaching data points for i-1th results. We are going to approximate these 
errors. 

1)   Find teaching data point that has maximum absolute error. (xmax) Archive sign of error at this point as 
signmax. 

2)   Find closest candidate of basis function to xmax. (cclo) 
3)   Center of basis function is given by following 

cloj cxc )1(max αα −+=     (7) 

Where, α is 0 at the first convolution and 1 at the final convolution. 
4)   Give radius according to the following 

10/)min(max iikij ratior −×=    (8) 

5)   Count data points within the radius. If there are more than minimum request go to 6), Otherwise enlarge 
radius by following 

6)   Count the number of data that has same sign with signmax. If its ratio is higher than given ratio then learn 
RBF and estimate errors and go to 1) until it becomes number of basis function for accuracy. Otherwise go 
to 7) 

7)   Find data that has opposite sign and farther distance from center of basis function cj, as xfar. Calculate 
maximum value of the following 

)min/(maxmax ,max iijiifari
cxt −−=  

If tmax is given by imax variable, then change radius of imax to 

maxmax,max jiifari cxr −=  

Then go to 6). If we cannot satisfy both condition simultaneously for several times, we will quit there and 
learn RBF and go to next one. 

 
4.6 Flow of Surrogate Optimization 
Figure 3 shows the flow chart of the surrogate Optimization. 
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Fig. 3 Flow Chart of Surrogate Optimization 

 
5. Prosed Method 
When the number of design variables increase and/or searching range for each design variables expanded, it is 
sometimes difficult to obtain global optimization within a small number of function calls. Even in those cases, as a 
nature of surrogate optimization, we can get close to global optimization relatively in a small number of function 
calls. From there on, we need to repeat a number of iterations to find the solutions. One of the ways to get rid of 
these situations is to zoom the searching range with existence information. In this study, we propose to shrink the 
searching range close to the best data when it gets some amount of datum. Figure 4 shows the flow of the proposed 
method. 
 

 
Fig.4 Flow Chart of the proposed method 

 
6. Numerical Example 
We use a famous pressure vessel problem as an example. Table 1 shows comparison of the results in some methods. 
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As this problem is mixed variable problem, so it is very complicated problem. In GRGAs, it needs more than 
10,000 function calls to obtain final results, and also it needs more than 6000 function calls to get close to global 
optima.  

 
Table 1 Comparison of the results of Pressure Vessel Problem 

Sandgren Qian Kannan Lin Hsu Lewis Arakawa
Penalty GA ALM SA GA RS+NLP ARGA
1990 1993 1994 1992 1995 1996 1997

R    m 1.212 1.481 1.481 N/A 1.316 0.985 0.986
L    m 2.990 1.132 1.198 N/A 2.587 5.672 5.626

Ts  cm 2.858 2.858 2.858 N/A 2.540 1.905 1.905
Th  cm 1.588 1.588 1.588 N/A 1.270 0.953 0.953

g1 0.840 1.000 1.000 N/A 1.000 0.997 1.000
g2 0.747 0.890 0.890 N/A 0.989 0.986 1.000
g3 0.445 0.186 0.182 N/A 0.424 0.938 0.922
g4 1.000 1.000 1.000 N/A 0.831 0.930 1.000

f   $ 8129.80 7238.83 7198.20 7197.70 7021.67 5980.95 5850.38  
 
 

Table 2 was the results that we had in the previous study[12] . Correlation means that we have added 10 new data 
after “Cut 5900”, and it is the average of correlation of actual value and RBF outputs for all functions. Indeed, if we 
add only one optimum solution, we need more than 300~500 function calls to cut 5900 and still keep constraints. 
Thus, we can safely say that recommendation function and multi-adding points really works better. Table 3 shows 
the results that we have obtained by using the proposed method. In each case, starting from 50 data, and they are 
the same compared with the results in Table 2.[13] 

 
Table 2 Results of the previous method 

C ase 1 2 3
C lose to G lobal 80 80 80
Inside C onstraints 100 100 110
C ut 5900 120 120 120
Its C ost 5859.34 5870.29 5865.91
C orrelations 0.995 0.994 0.996  

 
We start from the same Initial data with Table 2. However, we add 3 datum for optimization in each case, and add 
3 for recommendation function and add 3 for minimization of existence. And we zoomed after we had more than 
40 datum at least. Which means, we zoomed after we had more than 80, 120. Table 3 shows the results of the 
proposed method. In this case, zooming started after we came close to global solutions, so that we could not see the 
effect of zooming to find global solutions. However, we can still see effectiveness in the number of function calls, 
and also its accuracy. 
 

Table 3 Results of the proposed method 
C ase 1 2 3
C lose to G lobal 77 77 77
Inside C onstraints 98 98 98
C ut 5900 110 110 122
Its C ost 5854.29 5851.03 5853.92
C orrelations 0.996 0.997 0.996  

 
7. Conclusion 
In this paper, we propose zooming of searching range for surrogate optimization. As surrogate optimization has a 
number of datum before we are going to approximate functions. Thus, we can select the best data, and also we can 
gather nearest datum around the best data. With these datum, we can zoom searching range. It makes 
approximation of global optima much easier to approximate precisely, and also it makes optimization much easier 
to find the global solution. In this paper, we have shown the effectiveness of the method through numerical 
example. 
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