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1. Abstract
Reliability-based design optimization (RBDO) is one of the methods considering the effect of uncertainties on the
design optimization. However, the probabilistic parameters of the random variables also have uncertainties due to
lack of sufficient information under actual situation, for example in case that the number of experiments is limited.
This study considers the uncertainty of the probabilistic parameter of the random variables for the RBDO. On this
proposed method, the distribution parameters are also considered random variables. Based on Bayesian statistics,
the confidence intervals of the parameters are estimated with high accuracy. Then, the confidence interval of the
reliability-based optimum design is also evaluated. That is, the accuracy of the obtained reliability-based optimum
design is evaluated through the interval estimation, when sufficient information is not available. Through numerical
examples, the validity of the proposed method is demonstrated.
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3. Introduction
Recently, the importance of the reliability is growing in the structural design requirements. The reliability-based
design optimization (RBDO) has been adopted to evaluate the design under the reliability constraints in terms of
random variables [1]. RBDO generally requires the probabilistic distribution parameters of random values for the
reliability evaluation. For example, the first order reliability method (FORM) converts the probabilistic distribution
of random variables into the standardized normal distribution.
However, for the actual design problem, the probabilistic parameters of random parameters are sometimes obtained
with insufficient accuracy due to the limited number of experiments. In that case, the distribution parameters such
as mean and the standard deviation also have uncertainties.
This study addresses to investigate the effect of the parameter uncertainties on the reliability-based optimization.
For the purpose, this study proposes the distribution parameter estimation method considering uncertainties due to
the lack of information. Then, the effect of the uncertainties on the RBDO is clarified as the confidence interval of
the reliability-based optimum design.
The probabilistic distribution parameter is estimated based on Bayesian statistics. Bayesian statistics is the subset
of the field of statistics and related to conditional probability [2]. This statistics is well known to be suited to
estimating statistical model and employed for calculating distribution of failure probability. Gunawanet al. [2]
proposed the method considering incomplete information uncertainties, which RBDO problem is converted to the
multiobjective problem whose Pareto solutions reflect to the trade-off between performance and confidences. Wang
et al. [3] presented the paradigm of the reliability prediction using evolving, insufficient information applying
Bayes’ theory. They showed that Bayesian statistics is useful tool for the distribution parameter estimation and
that Bayesian updating method, the tool of Bayes’ theory, makes the probabilistic distribution or the estimated
reliability sufficient accuracy. However, under the lack of the number of the sample data or information of the
random values, Bayesian updating does not bring the sufficient accuracy.
First in this study, the parameter estimation method is proposed under the cases of the lack of the information.
In the next section, the reliability-based design optimization is reviewed. Then, Bayesian statistics is reviewed in
Section 5.. The proposed method is described in Section 6.. The validity of the proposed method is illustrated
through simple numerical examples in Section 7.. Finally, the conclusions are remarked.

4. Reliability-based design optimization
The RBDO is generally formulated as follows:

Minimize : f (d) (1)

subject to :P[g j(d, X) ≤ 0] ≤ Φ(−β j) ( j = 1, · · · ,NC)
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whered = (d1, · · · ,dND) andX = (x1, · · · , xNR) indicate the design variables and the random variables, respec-
tively. The random variable is assumed to have an independent Gaussian distribution for simplicity. The reliability
constraints indicate that the failure probabilities are lower than the upper limit, wheregi(d, X) is the j-th limit state
function andβ j is the target reliability index value corresponding failure mode.ND, NRandNC are the number
of the design variables, the random variables, and the reliability constraints, respectively.
As the RBDO algorithm, this study adopts the Modified-SLSV(Single-Loop-Single-Vector) method [4]. The orig-
inal SLSV method [5] converts the double-loop optimization loop of the RBDO into the single loop approach
by approximating the MPP (most probable point). The modified-SLSV method improves the convergency by
eliminating zigzagging iteration that will yield divergence of the optimum design searching.
At first, the MPP(most probable point) is described inX-space as follows:

x∗j = µ − β jσα
∗
j ( j = 1, · · · ,NC) (2)

α∗j =
σ j∇g j(µ, x∗j )∣∣∣∣σ∇g j(µ, x∗j )

∣∣∣∣′ ( j = 1, · · · ,NC) (3)

whereµ is the mean value of the random vector that is allocated as the design variables andσ is a diagonal matrix
whose diagonal element consists of the standard deviation of each random variable.α∗j denotes the normalized
gradient vector of thej-th limit state function evaluated at the MPPx∗j .
The reliability constraint is replaced into the deterministic constraints using Eq. (2) as follows:

g j(µ,µ − β jσα
∗
j ) ≥ 0 (4)

whereα∗j should be evaluated after obtaining the MPPx∗j .
On the SLSV method, the normalized gradient vectorα∗j is approximated by the vector obtained at the previous
iteration as follows:

x(k+1) = µ(k+1) − β jσα
∗
j
(k) (5)

where the superscript (k) indicates the number of iteration. This strategy makes the RBDO computationally effi-
cient.
However, the searching sometimes fails to converge or lead to an inaccurate solution. In the Modified-SLSV
method, the sensitivity is replaced to improve the convergence by using the previous values as follows:

α(k) = α(k−2) + α(k−1) (k > 2) (6)

5. Bayesian statistics
On Bayes’ theory, the following conditional probability formulation is used.

P(A|B) =
P(B|A)P(A)

P(B)
(7)

where eventA is considered as a cause of a resultB. P(A) is called a prior probability that the causeA happens,
andP(B|A) is called a likelihood that the resultB happens under the condition that the causeA happens. On the
other hand,P(A|B) is called a posterior probability that indicates the causeA happens under the condition that the
resultB happens.
In employing for parameter estimation, eventA convert to the distribution parameterθ, this is, the random variable
X is assumed to have distribution parameterθ. P(A) convert toπ(θ) becauseθ is defined as a distributed continuous
function. Then, Eq. (7) is described as follows:

π(θ|B) ∝ f (B|θ)π(θ) (8)

Eq. (8) indicates that the product of prior distributionπ(θ) and likelihood f (B|θ) is directly proportional to the
posterior distributionπ(θ|B). However, it is difficult to evaluate the product, because it is usually defined as a
multiple integral form. Usually, a natural conjugate prior distribution or Markov chain Monte Carlo (MCMC)
methods are used to evaluate the product efficiently. This study adopts the natural conjugate prior distribution.
Then, Bayesian confidence interval is evaluated by the posterior distribution to use for interval estimation, that is,
θ fall in this interval with the probability ofα. (α is defined as 3σ=99.6% in this research. )
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Figure 1: Estimation of prior distribution Figure 2: Procedure of creating simulation data

6. Proposed method
6.1 Estimate prior distribution
This study assumes that we haveND data of the normally distributed random variableX, where the parametersµX

andσX are unknown. In order to estimate the unknown parameter,MD data ofX are chosen amongND data without
repetition at first. This combination is called “data set” and the number of “data set” is denoted asNset(= NDCMD ).
Each “data set” has its own estimated mean value and standard deviation, (µ1, · · · , µNset) and (σ1, · · · , σNset). From
Nset mean values and standard deviations, the prior estimation of the parameters are performed by using the maxi-
mum likelihood method. This procedure is shown in Fig. 1.
Under the assumption that the mean value and the standard deviation are also normally distributed, their distribution
parameters are evaluated as follows:

µ
pri
µ =

1
Nset

Nset∑
j=1

µ j , σ
pri
µ

2
=

1
Nset

Nset∑
j=1

(µ j − µµ)2 (9)

µ
pri
σ =

1
Nset

Nset∑
j=1

σ j , σ
pri
σ

2
=

1
Nset

Nset∑
j=1

(σ j − µσ)2 (10)

whereµpri
(·) andσpri

(·)
2

are the estimated mean value and the variance of the distribution parameters.

6.2 Create simulation data
To estimate the distribution parameter ofX, simulation data is created from the estimated prior distributions as
follows.

1. The distribution parametersµ∗ andσ∗ are generated from their estimated prior distribution.

2. The Nsd simulation data are created by Gaussian distribution N(µ∗,σ∗) and their mean value and standard
deviation are evaluated.

3. The procedure of 2. repeatsMset times. Then, we haveMset number of the mean value and the standard
deviation, which sets are called ”simulation data set”.

4. The “simulation data sets” are preparedNsim sets.

This procedure is shown in Fig. 2.

6.3 Bayesian updating
Bayesian updating is formulated as follow:

µ
post
µ =

Aµpri
µ + Bµ̄sim

A+ B
, σ

post
µ =

√
1

A+ B
(11)

µ
post
σ =

Cµpri
σ + Dσ̄sim

C + D
σ

post
σ =

√
1

C + D
(12)
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where

A =
1

(σpri
µ )2
, B =

Mset

(σsim
µ )2
, C =

1

(σpri
σ )2
, D =

Mset

(σsim
σ )2

(13)

The posterior distribution parameters are evaluated fromMset data set.
It is important to confirm the estimated parameter for initial data ofX. In this study, the log likelihood is evalu-
ated for each estimated parameter. When the random valueX is assumed to follow Gaussian distribution, its log
likelihood is obtained as follows:

L =
Mset∑
j=1

− (xsim
j − µpost)2

2(σpost)2
− 1

2
log
(
2π(σpost)2

) (14)

The estimated parameter with the maximum log likelihood is considered as fit for the initial data and substituted for
the prior distribution parameter to iterate this process. If the parameters are considered as converged, the estimation
value and the confidence interval of distribution parameters are evaluated by their distribution parameters. Using a
constantα, the interval is evaluared as (µ − ασ, µ + ασ) for the normal distribution.
The proposed method is summarized as follows.

Step1 MD data ofX are chosen amongND data without repetition. (MakingNset number of“ data set”)

Step2 Nset mean values and standard deviations, the prior estimation of the parameters are estimated by using the
maximum likelihood method.

Step3 Simulation data are created from the estimated prior distributions andNsim“ simulation data set”are
prepared. (see Fig. 2)

Step4 The posterior distribution parameters are evaluated by using Bayesian updating and the estimated parameter
with the maximum log likelihood is considered as fit for the initial data.

Step5 The posterior distribution parameter is substituted for the prior distribution parameter.

Step6 If the parameters are considered as converged, the estimation value and the confidence interval of distribu-
tion parameters are evaluated by their distribution parameters. Otherwise, go back to step 3 with increase
Nsd.

7. Numerical example
In this research, the propertyND, MD, Nsim, Mset is fixed as 5, 3, 1000 and 5.Nsd is arithmetical progression as
5, 10, 15… each repetition. Due to the importance of the standard deviation in Modified-SLSV method, if the
estimated standard deviation is considered as converged, the iteration of parameter estimation is finished.

7.1 Mathematical problem
As the first example, the following two-dimensional mathematical RBDO problem [6] is considered:

Minimize : f (d) = d1 + d2 (15)

subject to : P(g j(x) ≤ 0) ≤ Φ(−βT
j ) ( j = 1, 2)

where : g1(x) =
x2

1x2

20
− 1 ≤ 0

g2(x) =
(x1 + x2 − 5)2

30
+

(x1 − x2 − 12)2

120
− 1 ≤ 0

0 ≤ d1 ≤ 10, 0 ≤ d2 ≤ 10

where the design variables are set as the mean value of the random variable,d = µ = (µ1, µ2)T , and the target
reliability is set asβ j = 3.
The random variablesx follow normal distribution and the standard deviation ofx2 is known asσ2 = 0.3. Here,
the standard deviation ofx1 is unknown and should be estimated from a limited number of the experimental data
shown in Table 1, where the data is made from the normal distributed random numberN(0.0,0.3) because the
original problem usesσ1 = 0.3 in [6]. The distribution parameters ofx1 are evaluated by the proposed method at
first. Table 2 shows the sample values, the estimated value and the confidence interval of the estimated parameters.
In this problem, the number of iteration is 6 times.
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Table 1: Initial experimental data ofx1 in problem 7.1
x1 0.1952 -0.02904 -0.3141 0.09188 0.6509

Table 2: Estimated parameter values in problem 7.1
Sample value Estimated mean value Estimated standard deviation Confidence interval(3σ)

µ 0.1190 0.1189 0.0101 0.0885 to 0.1494
σ 0.3232 0.3063 0.03672 0.2781 to 0.3539

Table 3: Formulation of crashworthiness problem
(a) Design variables, side constraints, and cov in random variables

Name Variable Lower bound Upper bound σ

Thickness of B-pillar inner (mm) d1 0.5 1.5 0.03
Thickness of B-pillar reinforcement (mm) d2 0.5 1.5 0.03
Thickness of floor side inner (mm) d3 0.5 1.5 0.03
Thickness of cross members (mm) d4 0.5 1.5 0.03
Thickness of door beam (mm) d5 0.5 1.5 0.03
Thickness of door belt line reinforcement (mm) d6 0.5 1.5 unknown
Thickness of roof rail (mm) d7 0.5 1.5 0.03
Material yield stress for B-pillar inner (GPa) d8 0.192 0.750 unknown
Material yield stress for floor side inner (GPa) d9 0.192 0.750 0.006

(b) Objective function and ten constraints
Name Upper limit Formulation

Weight (kg) f — 1.98+ 4.9d1 + 6.67d2 + 6.98d3 + 4.01d4 + 1.78

Abdomen load (kN) g1 1.0 1.163− 0.3717x2x4 − 0.484x3x9

VC upper (m/s) g2 0.32 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5

+0.08045x6x9

VC middle (m/s) g3 0.32 0.214+ 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.031x2x6

−0.018x2x7 + 0.021x3x8 + 0.121x3x9 − 0.00364x5x6

VC lower (m/s) g4 0.32 0.74− 0.61x2 − 0.163x3x8 − 0.18x7x9 + 0.227x2x2

Rib deflection upper (mm) g5 32.0 28.98+ 3.818x3 − 4.2x1x2 + 6.63x6x9 − 7.70x7x8

Rib deflection middle (mm) g6 32.0 33.86+ 2.95x3 − 5.057x1x2 − 11.0x2x8 − 9.98x7x8 + 22.0x8x9

Rib deflection lower (mm) g7 32.0 46.36− 9.9x2 − 12.9x1x8

Public symphysis force (kN) g8 4.0 4.72− 0.5x4 − 0.19x2x3

B-Pillar velocity (m/s) g9 9.9 10.58− 0.674x1x2 − 1.95x2x8

Door velocity g10 0.35 16.45− 0.489d3d7 − 0.843d5d6

(c) Initial experimental data ofx6 andX8 in problem 7.2
x6 0.9773 1.038 1.015 0.9737 0.9603
x8 0.2954 0.3076 0.3031 0.2947 0.2921

Then, the optimum design is obtained using the estimated parameters. The optimum solution consisting the con-
fidence interval ofσ1 is shown in Fig. 3. The “real solution” indicates the optimal solution usingσ1 = 0.3, that
is included in the confidence interval. The distribution and the confidence interval indicate the effect of the uncer-
tainty ofσ1 from estimated from the proposed method on the optimal solution. It is also found that this result has
an sufficient estimation accuracy regardless that it is estimated only from five sample data.

7.2 Crashworthiness problem for side impact
As the second numerical example, the following crashworthiness problem for side impact [7] is adopted. The
formulation is summarized in Table 3 (a) and (b). In this paper, the mean value of each random variable is treated
as design variabled = µ and the target reliability is set asβ j = 3. The random variablex have independent normal
distributions.
To simulate the lack of information, the standard deviations ofx6 andx8 are set as unknown. Instead, it is deter-
mined from the simulation data from the random numbers followingN(µ6, σ6) = N(1.0,0.03) andN(µ8, σ8) =
N(0.3,0.006), where the standard deviations are selected from the original problem [7]. The simulation data are
listed in Table 3 (c).
The estimated distribution parameters ofx6 and x8 are listed in Table 4. The confidence interval of the optimal
solution obtained with the confidence interval ofσ6 andσ8 are shown Fig. 4. In this problem, the number of
iteration for estimatedσ6 andσ8 are 4 times and 5 times respectively. It is found that the estimated parameters
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Table 4: The estimated distribution parameter ofX6 andX8

mean(estimated value) s. d. Confidence interval(3σ)
µ6 0.9929 0.0045 0.9794 to 1.0064
σ6 0.0290 0.0023 0.021 to 0.0359
µ8 0.2986 0.0016 0.2938 to 0.3034
σ8 0.0058 0.0008 0.0034 to 0.0082

Figure 3: Confidence interval of optimal solution in prob-
lem 7.1

Figure 4: Confidence interval of optimal solution in prob-
lem 7.2

have almost linear effect on the optimum design.

8. Conclusion
This paper proposes a parameter estimation method with lack of information and investigates the effect of the
information uncertainty on the optimum design of RBDO using the confidence interval.
The prior distribution are estimated using ’data set’ which are created by an initial experimental data. To evaluate
the lack of information, the simulation data by the prior distribution is used in this study. Then, using Bayesian
updating method, the accuracy of estimated value is improved. Through numerical examples, it is demonstrated
the validity of proposed method.
In the future, the proposed method will be used on actual design e.g., space structural system under the lack of
information to estimate the distribution parameters.
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