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1. Abstract

Reliability-based design optimization (RBDO) is one of the methods consideringféu @f uncertainties on the

design optimization. However, the probabilistic parameters of the random variables also have uncertainties due to
lack of suficient information under actual situation, for example in case that the number of experiments is limited.
This study considers the uncertainty of the probabilistic parameter of the random variables for the RBDO. On this
proposed method, the distribution parameters are also considered random variables. Based on Bayesian statistics,
the confidence intervals of the parameters are estimated with high accuracy. Then, the confidence interval of the
reliability-based optimum design is also evaluated. That is, the accuracy of the obtained reliability-based optimum
design is evaluated through the interval estimation, whéficgnt information is not available. Through numerical
examples, the validity of the proposed method is demonstrated.
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3. Introduction

Recently, the importance of the reliability is growing in the structural design requirements. The reliability-based
design optimization (RBDO) has been adopted to evaluate the design under the reliability constraints in terms of
random variables [1]. RBDO generally requires the probabilistic distribution parameters of random values for the
reliability evaluation. For example, the first order reliability method (FORM) converts the probabilistic distribution

of random variables into the standardized normal distribution.

However, for the actual design problem, the probabilistic parameters of random parameters are sometimes obtained
with insufficient accuracy due to the limited number of experiments. In that case, the distribution parameters such
as mean and the standard deviation also have uncertainties.

This study addresses to investigate tife@ of the parameter uncertainties on the reliability-based optimization.

For the purpose, this study proposes the distribution parameter estimation method considering uncertainties due to
the lack of information. Then, thefect of the uncertainties on the RBDO is clarified as the confidence interval of

the reliability-based optimum design.

The probabilistic distribution parameter is estimated based on Bayesian statistics. Bayesian statistics is the subset
of the field of statistics and related to conditional probability [2]. This statistics is well known to be suited to
estimating statistical model and employed for calculating distribution of failure probability. Gureven[2]

proposed the method considering incomplete information uncertainties, which RBDO problem is converted to the
multiobjective problem whose Pareto solutions reflect to the traéleebween performance and confidences. Wang

et al. [3] presented the paradigm of the reliability prediction using evolving,fitgent information applying

Bayes’ theory. They showed that Bayesian statistics is useful tool for the distribution parameter estimation and
that Bayesian updating method, the tool of Bayes’ theory, makes the probabilistic distribution or the estimated
reliability sufficient accuracy. However, under the lack of the number of the sample data or information of the
random values, Bayesian updating does not bring tfiecgnt accuracy.

First in this study, the parameter estimation method is proposed under the cases of the lack of the information.
In the next section, the reliability-based design optimization is reviewed. Then, Bayesian statistics is reviewed in
Section 5.. The proposed method is described in Section 6.. The validity of the proposed method is illustrated
through simple numerical examples in Section 7.. Finally, the conclusions are remarked.

4. Reliability-based design optimization
The RBDO is generally formulated as follows:

Minimize : f(d) 1)
subject to P[g;(d, X) < 0] < ®(-5)) (j -,NC)
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whered = (di,--- ,dyp) and X = (Xg,--- , XyRr) indicate the design variables and the random variables, respec-
tively. The random variable is assumed to have an independent Gaussian distribution for simplicity. The reliability
constraints indicate that the failure probabilities are lower than the upper limit, witdr&) is the j-th limit state
function andg; is the target reliability index value corresponding failure mol®, NRandNC are the number

of the design variables, the random variables, and the reliability constraints, respectively.

As the RBDO algorithm, this study adopts the Modified-SLSV(Single-Loop-Single-Vector) method [4]. The orig-
inal SLSV method [5] converts the double-loop optimization loop of the RBDO into the single loop approach
by approximating the MPP (most probable point). The modified-SLSV method improves the convergency by
eliminating zigzagging iteration that will yield divergence of the optimum design searching.

At first, the MPP(most probable point) is describeispace as follows:
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whereu is the mean value of the random vector that is allocated as the design variabtesssandiagonal matrix
whose diagonal element consists of the standard deviation of each random vawi?ad@notes the normalized
gradient vector of thg-th limit state function evaluated at the MRP.

The reliability constraint is replaced into the deterministic constraints using Eq. (2) as follows:

gj(u, p - Bjoraj) 2 0 (4)

whereqa’; should be evaluated after obtaining the MR
On the SLSV method, the normalized gradient veotpis approximated by the vector obtained at the previous
iteration as follows:

XD — ) _ Bio aT(k) )

where the superscripk) indicates the number of iteration. This strategy makes the RBDO computatioffally e
cient.

However, the searching sometimes fails to converge or lead to an inaccurate solution. In the Modified-SLSV
method, the sensitivity is replaced to improve the convergence by using the previous values as follows:

a® =%y ol (k> 2) (6)

5. Bayesian statistics
On Bayes' theory, the following conditional probability formulation is used.

P(BIAPA)

PAB) = 5 ™

where event is considered as a cause of a re®ltP(A) is called a prior probability that the causehappens,
andP(BJA) is called a likelihood that the resut happens under the condition that the cafideppens. On the
other handP(A|B) is called a posterior probability that indicates the cati$mppens under the condition that the
resultB happens.

In employing for parameter estimation, evéntonvert to the distribution parametgrthis is, the random variable
Xis assumed to have distribution parametdP(A) convert tor(0) because is defined as a distributed continuous
function. Then, Eq. (7) is described as follows:

n(6]B) o f(BI6)7(6) (8)

Eg. (8) indicates that the product of prior distributie(®) and likelihood f (B|6) is directly proportional to the
posterior distributiont(6|B). However, it is dfficult to evaluate the product, because it is usually defined as a
multiple integral form. Usually, a natural conjugate prior distribution or Markov chain Monte Carlo (MCMC)
methods are used to evaluate the prodtiatiently. This study adopts the natural conjugate prior distribution.

Then, Bayesian confidence interval is evaluated by the posterior distribution to use for interval estimation, that is,
0 fall in this interval with the probability ofx . (« is defined as 3=99.6% in this research. )
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6. Proposed method

6.1 Estimate prior distribution

This study assumes that we hadvg data of the normally distributed random variallewhere the parametes

andox are unknown. In order to estimate the unknown parambtgidata ofX are chosen amorgp data without
repetition at first. This combination is called “data set” and the number of “data set” is dendtgg(asy, Cw,)-

Each “data set” has its own estimated mean value and standard deviation, (un,,) and ¢4, - - -, on,). From

Nset mean values and standard deviations, the prior estimation of the parameters are performed by using the maxi-
mum likelihood method. This procedure is shown in Fig. 1.

Under the assumption that the mean value and the standard deviation are also normally distributed, their distribution
parameters are evaluated as follows:
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wherey()' ando)'"” are the estimated mean value and the variance of the distribution parameters.

6.2 Create simulation data
To estimate the distribution parameterXf simulation data is created from the estimated prior distributions as
follows.

1. The distribution parameters ando™* are generated from their estimated prior distribution.

2. The Ngg simulation data are created by Gaussian distributigm® () and their mean value and standard
deviation are evaluated.

3. The procedure of 2. repealds.times. Then, we hav#lse: number of the mean value and the standard
deviation, which sets are called "simulation data set”.

4. The “simulation data sets” are prepafdg, sets.

This procedure is shown in Fig. 2.

6.3 Bayesian updating
Bayesian updating is formulated as follow:

post _ Erl + B'JSim O_post: 1 (11)
Hu A+B “ “NVArB

Cud" + DM 1
5)_ost _ ,Ua-c — D(T o_(p’)_ost _ =5 (12)



where
1 B = Mset o 1 D= Mset
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The posterior distribution parameters are evaluated fvyzidata set.
It is important to confirm the estimated parameter for initial datX ofn this study, the log likelihood is evalu-

ated for each estimated parameter. When the random Yals@ssumed to follow Gaussian distribution, its log
likelihood is obtained as follows:

(13)
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The estimated parameter with the maximum log likelihood is considered as fit for the initial data and substituted for
the prior distribution parameter to iterate this process. If the parameters are considered as converged, the estimation
value and the confidence interval of distribution parameters are evaluated by their distribution parameters. Using a
constanty, the interval is evaluared ag ¢ ao, u + ao) for the normal distribution.

The proposed method is summarized as follows.

Stepl Mp data ofX are chosen amonlgp data without repetition. (Makintjse; number of “ data set’ )

Step2 Nsetmean values and standard deviations, the prior estimation of the parameters are estimated by using the
maximum likelihood method.

Step3 Simulation data are created from the estimated prior distributionsNapd “ simulation data set are
prepared. (see Fig. 2)

Step4 The posterior distribution parameters are evaluated by using Bayesian updating and the estimated parameter
with the maximum log likelihood is considered as fit for the initial data.

Step5 The posterior distribution parameter is substituted for the prior distribution parameter.

Step6 If the parameters are considered as converged, the estimation value and the confidence interval of distribu-
tion parameters are evaluated by their distribution parameters. Otherwise, go back to step 3 with increase
Neg.

7. Numerical example

In this research, the properNp, Mp, Nsim, Msetis fixed as 5, 3, 1000 and Mgy is arithmetical progression as

5, 10, 15--- each repetition. Due to the importance of the standard deviation in Modified-SLSV method, if the
estimated standard deviation is considered as converged, the iteration of parameter estimation is finished.

7.1 Mathematical problem
As the first example, the following two-dimensional mathematical RBDO problem [6] is considered:

Minimize :  f(d) = dy + dp (15)

subjectto : P(gj(X) < 0) < ®(-8]) (j = 1.2)
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where the design variables are set as the mean value of the random vatiabje,= (u1,u2)", and the target
reliability is set agj =

The random variables follow normal distribution and the standard deviationxgfis known aso> = 0.3. Here,

the standard deviation of; is unknown and should be estimated from a limited number of the experimental data
shown in Table 1, where the data is made from the normal distributed random ni{h@r0.3) because the

original problem uses; = 0.3 in [6]. The distribution parameters &f are evaluated by the proposed method at

first. Table 2 shows the sample values, the estimated value and the confidence interval of the estimated parameters.
In this problem, the number of iteration is 6 times.



Table 1: Initial experimental data af in problem 7.1
X1 \ 0.1952 -0.02904 -0.3141 0.09188 0.6509

Table 2: Estimated parameter values in problem 7.1
Sample value Estimated mean value Estimated standard deviation Confidence intgrval(3
u 0.1190 0.1189 0.0101 0.0885 to 0.1494
o 0.3232 0.3063 0.03672 0.2781 t0 0.3539

Table 3: Formulation of crashworthiness problem
(a) Design variables, side constraints, and cov in random variables

Name Variable | Lower bound  Upper bound o
Thickness of B-pillar inner (mm) d; 0.5 15 0.03
Thickness of B-pillar reinforcement (mm) d; 0.5 15 0.03
Thickness of floor side inner (mm) ds 0.5 15 0.03
Thickness of cross members (mm) ds 0.5 15 0.03
Thickness of door beam (mm) ds 0.5 15 0.03
Thickness of door belt line reinforcement (mm) dg 0.5 15 unknown
Thickness of roof rail (mm) d; 0.5 15 0.03
Material yield stress for B-pillar inner (GPa) ds 0.192 0.750 unknown
Material yield stress for floor side inner (GPa, do 0.192 0.750 0.006
(b) Objective function and ten constraints
Name Upper limit | Formulation

Weight (kg) f — 1.98+ 4.9d; + 6.67d, + 6.98d; + 4.01d, + 1.78

Abdomen load (kN) g1 1.0 1.163- 0.3717%Xs — 0.484X3Xq

VC upper (ms) g2 0.32 0.261- 0.0159%; x; — 0.188%; X5 — 0.019%; %7 + 0.0144%3 X5

+0.08045¢ %9
VC middle (nys) g3 0.32 0.214+ 0.0081%s — 0.131x; xg — 0.0704%; Xg + 0.031x, X
—0.018x;X7 + 0.021x3Xg + 0.121X3Xg — 0.00364X5 X5

VC lower (m's) ga 0.32 0.74 - 0.61x, — 0.163x3Xg — 0.18x%7Xg + 0.227%> X

Rib deflection upper (mm)  gs 32.0 2898 + 3.818x3 — 4.2X1X> + 6.63XgXg — 7.70%X7Xg

Rib deflection middle (mm) gs 32.0 33.86 + 2.95x3 — 5.057x1 % — 11.0X>%g — 9.98%7Xg + 22.0%gXg

Rib deflection lower (mm) g7 32.0 46.36— 9.9% — 12.9%; Xg

Public symphysis force (kN) gg 4.0 4.72 - 0.5%, — 0.19%;X3

B-Pillar velocity (nys) go 9.9 10.58 - 0.674x;X; — 1.95%,Xg

Door VelOCity g10 0.35 16.45- 0489j3d7 - 084315(’5

(c) Initial experimental data ofs andXg in problem 7.2
X | 0.9773 1.038 1.015 0.9737 0.9603
xg | 0.2954 0.3076 0.3031 0.2947 0.2921

Then, the optimum design is obtained using the estimated parameters. The optimum solution consisting the con-
fidence interval oty is shown in Fig. 3. The “real solution” indicates the optimal solution ustag= 0.3, that

is included in the confidence interval. The distribution and the confidence interval indicatéettteoéthe uncer-

tainty of o; from estimated from the proposed method on the optimal solution. It is also found that this result has
an suficient estimation accuracy regardless that it is estimated only from five sample data.

7.2 Crashworthiness problem for side impact

As the second numerical example, the following crashworthiness problem for side impact [7] is adopted. The
formulation is summarized in Table 3 (a) and (b). In this paper, the mean value of each random variable is treated
as design variabld = p and the target reliability is set # = 3. The random variable have independent normal
distributions.

To simulate the lack of information, the standard deviationgsaind xg are set as unknown. Instead, it is deter-
mined from the simulation data from the random numbers followi{ges, o) = N(1.0,0.03) andN(us, og) =
N(0.3,0.006), where the standard deviations are selected from the original problem [7]. The simulation data are
listed in Table 3 (c).

The estimated distribution parametersxgfand xg are listed in Table 4. The confidence interval of the optimal
solution obtained with the confidence intervalcf and og are shown Fig. 4. In this problem, the number of
iteration for estimateds andog are 4 times and 5 times respectively. It is found that the estimated parameters



Table 4: The estimated distribution parameteKgfind Xg

mean(estimated valug) s. d. | Confidence interval(3)

HUe 0.9929 0.0045 0.9794 to 1.0064
o 0.0290 0.0023 0.021 to 0.0359
Us 0.2986 0.0016 0.2938 t0 0.3034
og 0.0058 0.0008 0.0034 to 0.0082
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have almost linearfeect on the optimum design.

8. Conclusion

This paper proposes a parameter estimation method with lack of information and investigat#eahefehe
information uncertainty on the optimum design of RBDO using the confidence interval.

The prior distribution are estimated using 'data set’ which are created by an initial experimental data. To evaluate
the lack of information, the simulation data by the prior distribution is used in this study. Then, using Bayesian
updating method, the accuracy of estimated value is improved. Through numerical examples, it is demonstrated
the validity of proposed method.

In the future, the proposed method will be used on actual design e.g., space structural system under the lack of
information to estimate the distribution parameters.
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