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1. Abstract  
Several Reliability-Based Design Optimization (RBDO) algorithms have been developed to solve engineering 
optimization problems under design uncertainties. Some existing methods transform the random design space to 
standard normal design space to estimate the reliability assessment for the evaluation of the failure probability. 
When the random variable is arbitrarily distributed and cannot be properly fitted to any known form of probability 
density function, the existing RBDO methods, however, cannot perform reliability analysis either in the original 
design space or in the standard normal space. This paper proposes a novel method, Ensemble of Gradient-based 
Transformed Reliability Analyses (EGTRA), to evaluate the failure probability of arbitrarily distributed random 
variables in the original design space. The arbitrary distribution of the random variable is approximated by a 
merger of multiple Gaussian kernel functions. Each Gaussian kernel function is transformed to a single-variate 
coordinate that is directed toward the gradient of the constraint function. The failure probability is then estimated 
by the ensemble of each kernel reliability analysis. This paper further derives a linearly approximated probabilistic 
constraint at the design point with allowable reliability level in the original design space using the aforementioned 
fundamentals and techniques. Numerical examples with generated random distributions show EGTRA is capable 
of solving the RBDO problems with arbitrarily distributed uncertainties in the original design space. 
2. Keywords: gradient-based transformation; Gaussian kernel density estimation; reliability-based design 
optimization; arbitrarily distributed design uncertainty. 
 
3. Introduction 
In engineering design, traditional deterministic optimization has been successfully applied to improve quality, 
processes and reduced costs. However, uncertainties have to be considered to make designs more confident and 
reliable. These traditional deterministic approaches for optimization of components, products and systems are 
slowly being replaced in the past decades of approaches that integrate probabilistic considerations. These 
probabilistic considerations were investigated and have been known to be material property deviation [1], 
allowable failure probabilities from standards [2], production condition [3], reported incidences of failures or 
satisfactions [4] and operating conditions [5], to mention a few. The basic concept behind Reliability-Based 
Design Optimization (RBDO) methods is to integrate and consider these probabilistic factors in the optimization 
process and many approaches have been developed in the past.  
Reliability Index Approach (RIA) [6-9] formulated the probabilistic constraints based on the evaluations of 
reliability indices. Lin et al. [10] resolved the convergence problems of RIA [11] by modifying the reliability index 
to correctly evaluate the failure probability for both feasible and infeasible design points. Performance Measure 
Approach (PMA) [11-15], on the other hand, implements an inverse reliability analysis, which determines the 
performance measure of a target design point. Probabilistic constraints are then formulated from these 
performance measures. Observations of the strengths and weaknesses of both RIA and PMA has led to the 
development of Hybrid Reliability Approach (HRA) [16, 17]. HRA uses a selection factor to determine whether 
PMA or MRIA would be efficient to use. Derivations of a Unified Reliability Formulation (URF) [18] had 
revealed how various RBDO algorithms can be reformulated into one general equation based on the reliability 
analyses in the standard normal design space and the fundamental aspect of linear expansions with allowable 
reliabilities. 
Recently, the design optimization problems with arbitrarily distributed uncertainties have drawn high attentions 
[19-21] because they cannot be properly solved by RBDO algorithms that require transformation of the original 
design space to the standard normal design space. Therefore, the situations such as unknown random distribution 
type, undeterminable transformation to the standard normal design space, and insufficient information about the 
random distribution, are difficult for most RBDO algorithms. Thus, a new method that is capable of efficiently 
solving the RBDO problem with arbitrarily distributed uncertainties in the original design space is desirable. 
In this paper, a novel method called Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) is 
derived based on estimation of arbitrary distribution in the original design space using Kernel Density Estimation 
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(KDE) [22, 23] and reliability analyses along the gradient-based transformed direction [24]. A linearly 
approximated probabilistic constraint is formulated at the design point determined at the allowable reliability level. 
The aforementioned derivations and technologies are conducted in the original space; therefore, EGTRA is 
expected to be capable of solving RBDO problems with arbitrarily distributed uncertainties. Two numerical 
examples are solved in order to investigate the numerical performances of the proposed method. 
 
4. Derivation of Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) 
A typical RBDO problem is formulated as follows: 
 Min f d( ) s.t. P gi X( ) > 0!" #$≤ Pf ,i i =1...M  (1) 
where X  is the randomly distributed design variable; d  is the mean of X  and is commonly used as the design 
variable; f  is the objective (or cost) function; gi  is the ith  constraint function and gi ≤ 0  represents the ith  safe 
region; Pf ,i  is ith  allowable failure probability. There are M  constraints and L  variables. Several RBDO 
algorithms have been investigate the failure probability in Eq. (1) during the optimization process to reach the 
optimality, feasibility and reliability simultaneously. However, some existing methods cannot perform the 
reliability analysis properly when the following conditions occur: (1) Distribution type of X  is unknown. (2) 
Transformation of X  to the ith  standard normal design space   U i  is difficult to determine or does not exist. (3) 
Data about the random distribution is insufficient. 
This paper assumes the relative positions between the sampling points and the design point remain constant and are 
independent from the location of the design point. The following gradient-based transformation [24] is first 
considered to transform the original coordinate to the single variate design space yi  toward the direction of the ith  
constraint gradient v i =∇xgi (d) ∇xgi (d)

−1 : 
 yi,p = (s p −d) ⋅v i  (2) 
where the design point d  is the origin of the ith  gradient-based transformed design space, denoted by Ωi ; the 
value of yi,p  is the projection of the pth  sampling point in Ωi . Figure 1 (a) illustrates the transformation to the 
constraint gradient direction and the mapping of the sampling points to Ωi . 
A Most Probable Target Point (MPTP) in Ωi , denoted by yi

# , is defined such that the summation of the cumulative 
probability of each kernel function from the MPTP to infinity is equal to the allowable failure probability, as 
illustrated in Figure 1 (b). Therefore, yi

#  is determined by solving the following equation: 
 N −1 Φ p (yi

# )
p=1

N
∑ = Pf,i  (3) 

In Eq. (3), Φ p  is the pth  Gaussian Cumulative Distribution Function (CDF) and is defined as below: 
 Φ p (y0 )= σ −1( 2π )−1 exp[−0.5(yi − yi,p )

2σ −2 ]dyiy0

∞

∫  (4) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Illustration of the proposed method in Ωi : (a) Transformation of sampling points to Ωi ; 
(b) Determination of Most Probable Target Point; (c) Determination of Allowable Reliability Point. 

 
where σ  is a shape parameter in KDE [22, 23]. The size of σ  is critical for the accuracy of the estimation of the 
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arbitrarily distributed PDF. The location of MPTP is essential for the estimation of the design point with allowable 
reliability and the further formulation of probabilistic constraint. 
The RBDO process in Ωi  is expected to move the MPTP to the limit state; therefore, the value of yi

#  also 
represents the allowable tolerance near the limit state, as illustrated in Figure 1 (c). The ith  Allowable Reliability 
Point (ARP) yi

A  is then determined by 
 yi

A = yi
* − yi

# = −gi (d) ||∇xgi (d) ||
−1 −yi

#  (5) 
where yi

*  is the Most Probable Failure Point (MPFP) in Ωi . In the end, the RBDO procedure is expected to move 
the design point to the location of the ARP. Thus, the failure probability of the new design point is expected to 
reach the allowable level. 
Using URF [18], the linearly approximated probabilistic constraint is formulated below: 
 (d− xi

A ) ⋅v i ≤ 0  (6) 
where xi

A  is the ith  Allowable Reliability Point (ARP) in the original design space. Therefore, a final formulation 
of the ith  probabilistic constraint using the EGTRA is given as follows: 
 {d−d(k ) +[gi (d

(k ) ) ||∇xgi (d
(k ) ) ||−1 +yi

# ]v i
(k )} ⋅v i

(k ) ≤ 0  (7) 
From the derived Eq. (7), it is noted that yi

#  is not only a most probable allowable tolerance but also a newly 
defined reliability assessment in the original design space for the proposed EGTRA method. 
 
5. Numerical Examples 
This section first introduces the procedure of random distribution generation that is used in this paper. Two 
mathematical problems are then solved by the proposed EGTRA. 
 
5.1 Generations of Arbitrarily Distributed Random Variables 
This paper considers the design point at the mean value of the generated random distribution. All problems are 
solved in the two-dimensional design space, i.e. L = 2 , for better illustration of the results. The following 
distributions are artificially generated by specified procedures for research purpose and may not be seen in real 
world. This paper intentionally generates some distributions that are “concavely” ranged and are difficult for 
conventional reliability analyses. 
Figure 2 (a) shows the generated heat-shaped distribution with its mean point at the origin of the coordinate. If it is 
improperly considered as a Gaussian distribution, as shown by the dashed contour, the standard deviations along 
the x and y directions will be computed as [0.3896, 0.1648], respectively. Figure 2 (b) to (d) show the generated 
“like”-shaped, star-shaped and corona-shaped distributions, respectively. If these distributions are improperly 
considered as Gaussian distributions, the standard deviations along the x and y directions are computed as [0.2493, 
0.3045], [0.3596, 0.3606] and [0.4329, 0.4337] for the “like”-shaped, star-shaped and corona-shaped distributions, 
respectively. 
The heart-shaped distribution shows a concave distribution supported in the entire design space. The “like”-shaped 
distribution shows a combined distribution that is partially supported in in the entire domain and partially 
supported in a semi-interval. The star-shaped distribution shows a uniform distribution in a concave region. The 
corona-shaped distribution shows a distribution supported in the entire design space with a void region at the 
center. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Generated (a) heart-shaped, (b) “like”-shaped, (c) star-shaped and (d) corona-shaped distributions. 
 

5.2 Example 1: A Linear Math Problem 
The first example is a linear mathematical problem [10, 11], which is shown in Eq. (8). 

 
   

Min
d

d1+ d2

s.t. P[g1 = −X1 − 2X2 +10 > 0]≤ Pf ; P[g2 = −2X1 − X2 +10 > 0]≤ Pf ; 0.1≤ d1, d2 ≤10
 (8) 

In this paper, two various levels of allowable failure probabilities are investigated: 
  
Pf =1%  and  30% . The initial 
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design point is located at [5, 5]. Figure 3 shows the optimal solutions using EGTRA with N = 50000  to solve the 
problem in Eq. (8) in the generated random distributions. The subfigures (a) to (d) are the results for 

  
Pf =1%  

while the subfigures (e) to (h) are for 
  
Pf = 30% . The red lines represent the limit states of the original constraints 

and the black lines are the linearly approximated probabilistic constraints, which are determined using the Eq. (7)
. 
Because each kernel reliability analysis in EGTRA is completed along the same gradient direction, the required 
function evaluation of each constraint per iteration is only 3. Monte Carlo Simulations (MCS) with 105  sampling 
points were used to evaluate the true failure probabilities. The numerical results showed the proposed method is 
capable of solving the problems with the generated design uncertainties with accurate estimations of reliabilities in 
the original design space, i.e. errors were less than 1%. 

 

 
Figure 3. Solutions of example 1 in various distributions and allowable failure probabilities: (a) heart, 1% ; (b) 
“like”, 1% ; (c) star, 1% ; (d) corona, 1% ; (e) heart, 30% ; (f) “like”, 30% ; (g) star, 30% ; (h) corona, 30% . 

 
5.3 Example 2: A Nonlinear Benchmark Problem 
The second example is a well-known benchmark mathematical problem [10, 11, 25, 26] that contains three 
nonlinear constraints. Because the third constraint is inactive, it is removed and the following problem formulation 
is considered in this paper. 

 
   

Min
d

d1+ d2

s.t. P[g1 =1− ( X1
2 X2 ) 20 > 0]≤ Pf ; P[g2 =1− ( X1+ X2 −5)2 30− ( X1 − X2 −12)2 120 > 0]≤ Pf ; 0.1≤ d1, d2 ≤10

(9) 

In this problem, two various levels of allowable failure probabilities, i.e. 
  
Pf =1%  and  30% , are studied. EGTRA 

is used to solve the problem with N = 50000 . The initial design point is located at [5, 5]. The rest of the problem 
setting is the same as the first example. Figure 4 (a) to (d) show the optimal solutions for 

  
Pf =1%  while the 

subfigures (e) to (h) show the ones for 
  
Pf = 30% . EGTRA was capable of solving the given problems with only 

3M  function evaluations per iteration. However, the accuracy of EGTRA slightly dropped because linear 
approximations were utilized for the nonlinear constraints in Eq. (9), i.e. error increased up to around 6%. 

 

 
Figure 4. Solutions of example 2 in various distributions and allowable failure probabilities: (a) heart, 1% ; (b) 
“like”, 1% ; (c) star, 1% ; (d) corona, 1% ; (e) heart, 30% ; (f) “like”, 30% ; (g) star, 30% ; (h) corona, 30% . 

6. Conclusions 
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Some existing RBDO algorithms transformed the original random design space to the standard normal design 
space in order to perform the reliability analyses for the evaluation of failure probabilities. However, these 
reliability analyses cannot be properly executed when the transformation to the standard normal design space 
cannot be determined. A new RBDO algorithm, Ensemble of Gradient-based Transformed Reliability Analyses 
(EGTRA), was developed to solve design optimization problems with arbitrarily distributed uncertainties in the 
original design space. The arbitrarily distributed PDF was approximated by KDE and then transformed to a 
single-variate coordinate toward the constraint gradient direction. The entire reliability analysis is decomposed to 
multiple kernel reliability analyses in the gradient-based transformed design space and the results are merged 
together for the formulation of a linearly approximated probabilistic constraint function. Because each kernel 
reliability analysis is completed along the same gradient direction, the required function evaluation of each 
constraint per iteration is only 3. The numerical results showed the proposed method is capable of solving the 
problems with the generated design uncertainties with accurate estimations of reliabilities in the original design 
space. 
The newly developed method does not need transformation to the standard normal design space and reliability 
analyses that require additional function evaluations. EGTRA is able to perform very accurate reliability analysis 
for linear RBDO problems and the accuracy reduces when the constraints are nonlinear. EGTRA is a method that 
requires information about the sampling points of the arbitrarily distributed random variables. Insufficient 
sampling points may lead to inaccurate estimations of PDF and failure probabilities. The performance of EGTRA 
will reduce when the sampling at the tail of the distribution is insufficient. This may happen when the amount of 
sampling points and the level of allowable failure probability are both very low. 
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