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1. Abstract 
The main purpose of this study is to develop an accurate methodology for the most probable point (MPP)-based 
dimension reduction method (DRM) by proposing a proper orthogonal transformation to calculate a probability of 
failure more accurately. In this study, dependency of an axis direction is shown in the univariate DRM, indicating 
that the probability of failure can be differently calculated according to a different orthogonal transformation. In 
order to obtain a proper axis direction for DRM, the Hessian of a performance function is utilized in this study. By 
performing orthogonal transformation using eigenvectors of the Hessian matrix, axes of Gaussian quadrature 
points for numerical integration are selected along the principal eigenvector directions of the Hessian. In this way, 
the error incurred by the univariate dimension reduction is minimized, so the probability of failure can be 
calculated more accurately. Numerical examples verify the accuracy of the proposed method by comparing with 
existing MPP-based DRM. 
2. Keywords: Dimension Reduction Method (DRM), Most Probable Point (MPP), First-Order Reliability 
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3. Introduction 
Nowadays engineers are facing new and emerging challenges which include intensive use of computational 
simulations and application of new technologies into complex systems. Due to this, the requirements of high 
quality and reliability, and the reliable decision-making under uncertainty are essential. To overcome these things, 
reliability analysis has been advanced gradually. As a result, reliability analysis has been widely and successfully 
applied to various engineering applications.  

There are various reliability analysis methods and the most popular methods are analytical methods and 
sampling methods. Analytical methods are called most probable point(MPP)-based methods which include First-
Order Reliability Method(FORM) [1,2], Second-Order Reliability Method(SORM) [3-5] and Dimension 
Reduction Method(DRM) [6-10]. When calculating the probability of failure by FORM and SORM, a performance 
function is approximated by the first or second-order Taylor series expansion at MPP. Through a linear 
approximation, the probability of failure could be simply calculated in FORM. However, if the performance 
function is highly nonlinear and/or multidimensional, the result of FORM could be erroneous. SORM is definitely 
more accurate than FORM because it approximates the performance function in a quadratic form. But SORM also 
includes errors [5] caused by a few approximations. MPP-based DRM [8-10] has been recently proposed to 
approximate a multidimensional function using the sum of lower dimensional functions. MPP-based DRM is much 
more accurate than FORM and users can control its accuracy by changing the number of quadrature (or integration) 
points. In the MPP-based DRM, probability of failure calculation is related to axis directions because the 
quadrature points are located along the axes. 

The main objective of this study is to improve the accuracy of the MPP-based DRM using eigenvectors of the 
Hessian matrix. The probability of failure calculation in the MPP-based DRM changes according to the axes 
because locations of quadrature points depend on the axes. To obtain more accurate calculation, the quadrature 
points should be located in proper position. In other words, the proper axes should be obtained through an 
appropriate transformation from the original space. Therefore it is a main issue to find an orthonormal rotation 
matrix which arranges axes in the proper position in the proposed method. To apply the proposed method, an MPP 
should be found first after transforming all random variables in the original X-space to the standard normal U-
space through the Rosenblatt transformation [12]. After finding MPP, the existing method (i.e., MPP-based DRM)  
uses Gram-Schmidt orthogonalization to obtain the rotation matrix but the proposed method has additional process 
which uses eigenvectors of the Hessian matrix at MPP in U-space. With the rotation matrix which is obtained by 
using eigenvectors of the Hessian matrix, the quadrature points are arranged in proper position and the probability 
of failure calculation becomes more accurate. 

The paper is organized as follows. Section 4 covers basic concepts of reliability analysis. Section 5 covers the 
detail process of the proposed method. In Section 6, numerical examples are tested to demonstrate that the proposed 
MPP-based DRM can calculate the probability of failure of a performance function more accurately than the 
existing MPP-based DRM. 
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4. Basic concepts and review for previous method 
 
4.1 FORM and SORM 
FORM has been extensively used for a reliability analysis which includes calculation of probability of failure, 
denoted as FP  which is defined using a multidimensional integral [1, 11] 
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where ( )G X  is the performance function such that ( ) 0G >X  is defined as failure. T
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N-dimensional random vector where the upper case iX  means that they are random variables, and ( )fX x  is a 
joint PDF of X.  

For calculation of the probability of failure in Eq. (1), FORM linearizes ( )G X at MPP in U-space obtained by 
the Rosenblatt transformation [12] and first-order Taylor approximation such that 
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where *u is the MPP in U-space which means the minimum distance point on the limit state function from the 
origin. MPP can be found by solving the following optimization problem to 
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g∇  is the gradient vector of the performance function calculated at the MPP in U-space. A reliability index, 

denoted as  𝛽, is defined as the distance from the origin to *u  [2]. With a linearized performance function and the 
reliability index 𝛽, FORM approximates the probability of failure in Eq. (1) as 

FORM ( )FP β≅ Φ −                                     (4) 

where ( )Φ •  is the standard normal cumulative distribution function (CDF).  
Using a normalized MPP vector 𝜶 , quadratic approximation of the performance function in U-space and 

rotational transformation, the probability of failure can be approximated by SORM as [3, 4, 9] 
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 , H is the Hessian matrix of the performance function at MPP, and R is the 

orthonormal rotation matrix used in =U RV . 
 
4.2 MPP-based DRM 
DRM is a method to approximate the multi-dimensional integration of the performance function using a function 
with reduced dimension. There are several types of DRM according to the level of dimension reduction. In MPP-
based DRM which uses a univariate DRM, any N-dimensional performance function ( )G X  can be reduced to 
summation of one-dimensional functions as [8, 9] 
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where * * * * T

1 2{ , , , }Nx x x=x  is the MPP obtained by Eq. (3). To calculate the probability of failure using the 
MPP-based DRM, transformation to rotated standard normal V-space is required. To rotate U-space into V-space, 
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it is necessary to construct an N×N orthonormal matrix R whose Nth column is the normalized MPP vector 𝜶, i.e., 
𝐑 = 𝐑𝟏   𝜶  where N×(N-1) matrix 𝐑𝟏 satisfies 𝜶𝐓𝐑𝟏 = 𝟎 and N is the number of random variables. In V-
space, the probability of failure can be expressed as 

( ) 0
[ ( ) 0] ( )dF G

P P G f
>

≡ > = ∫ vV
V v v                            (7) 

where ( ) ( ( )G G=V X V)  is obtained from the Rosenblatt transformation and rotational transformation. The 
probability of failure is calculated using the constrain shift such that [10] 

*( ) ( ) ( )sG G G≡ −v v v                                (8) 

where ( )sG v  is a shifted performance function and * T{0, , 0, }β=v  is the MPP in V-space. In a general N-

dimensional space, ( )sG v is expressed as [10] 
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Using the first-order Taylor series expansion at the MPP, the last univariate component in Eq. (9) is linearly 
approximated as 
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This linear approximation along Nv -axis is also used for the probability of failure calculation in SORM [3, 4]. 
Using the above equations and the linear approximation, the probability of failure in the MPP-based DRM is 
calculated as [9, 10, 13, 14] 
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where j

iv  are quadrature points, jw  are weights, and n is the number of quadrature points and weights. Table 1 

shows values of the quadrature points and weights. 
 

Table 1. Gaussian quadrature points and weights 
 

n Quadrature points Weights 

1 0.0 1.0 
3 ± 3 0.166667 
 0.0 0.666667 

5 
 
 

±2.856970 
±1.355626 

0.0 

0.011257 
0.222076 
0.533333 
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5. MPP-based DRM using the eigenvectors of the Hessian matrix 
The objective of the MPP-based DRM using eigenvectors of the Hessian matrix is to improve the accuracy of 
DRM. Dependency of an axis direction is shown in the univariate DRM, indicating that the probability of failure 
would be calculated differently according to a different orthogonal transformation. In order to obtain a proper axis 
direction for DRM, eigenvectors of the Hessian matrix of a performance function at MPP is used when 
transforming U-space to V-space. This method consists of 2 steps to obtain the rotation matrix that has the Hessian 
information before calculating the probability of failure by the MPP-based DRM 

Step 1. Transforming U-space to H-space using eigenvectors of the Hessian 

First, it is required to find eigenvectors of the Hessian matrix of a performance function g( )U  at MPP. 
Eigenvectors are arranged in column vectors of the first rotation matrix 𝐑𝟏. Using the orthonormal transformation 
𝐔 = 𝐑𝟏𝐇, U-space is transformed to the standard normal H-space. Through this process, all axes are arranged in 
eigenvector directions of the Hessian of g( )U  and thus cross-term effects can be minimized.  

Step 2. Transforming H-space to V-space 

To apply the MPP-based DRM, Nth axis direction should be aligned to the 𝜶-direction which is the normalized 
MPP vector in U-space. To obtain this axis, it is necessary to obtain an N×N orthonormal matrix 𝐑𝟐  whose Nth 
column is the normalized MPP vector in H-space given by  

𝜶 ≡ 𝐑:;:𝜶                                    (12) 

i.e., 𝐑𝟐 = 𝐑𝟑   𝜶  where N× N − 1   matrix 𝐑> satisfies 𝜶?𝐑> = 𝟎 and N is the number of random variables. 
𝐑> is determined by the Gram-Schmidt orthogonalization. The Gram-Schmidt process takes linearly independent 
set S = {𝑠:,⋯ , 𝑠E} which consists of the normalized MPP vector(𝑠: = 𝜶) and standard basis vector(𝑠H,⋯ 𝑠E) 
and it generates an orthogonal set S′ = {𝑠:J , ⋯ , 𝑠EJ }. Normalized S′ vector set comprises an orthonormal matrix 
𝐑𝟐. Using the orthonormal transformation 𝐇 = 𝐑𝟐𝐕, H-space is rotated to the standard normal V-space. Figure 
1 shows 3-D limit state function contours in each space obtained from the proposed method. 
 

     
(a)                             (b)                            (c) 

 
Fig. 1. 3-D limit-state function contour in (a) U-space; (b) H-space; (c) V-space 

 
Through these 2 steps, 2 orthonormal transformations are combined into 𝐔 = 𝐑𝟏𝐑𝟐𝐕. Substituting 𝐑𝟏𝐑𝟐 with 
𝐑L, U-space is rotated(transformed) to V-space by 𝐑L. Finally, the orthonormal rotation matrix 𝐑L is obtained 
which has the Hessian information of g( )U  and the Nth column of 𝐑L is the normalized MPP vector 𝜶. Using 
𝐑L, V-space axes have the Hessian information and quadrature points required to calculate the probability of 
failure are aligned in the V-space axes direction. For this reason, accuracy of the proposed MPP-based DRM is 
further improved. Figure 2 shows the position of the quadrature points of the limit state function contour in V: −
VH plane depending on whether the eigenvector direction is used or not.  
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(a)                                    (b) 

 
Fig. 2. V: − VH plane contour : (a) MPP-based DRM; (b) Proposed DRM 

 
6. Numerical example 
Accuracy improvement of the MPP-based DRM using eigenvectors of the Hessian matrix is verified by comparing 
it with the existing MPP-based DRM. To compare 2 methods, consider a 3-dimensionl high-order function given 
by  

4 3 2

1 1 2 3 1 2 2 3( ) 12G X X X X X X X= + + + + −X                         (11) 

where the random variable iX ( i = 1, 2, 3) follows the standard normal distribution. For the comparison, Monte 

Carlo Simulation (MCS) [15] result is considered as the true value of the probability of failure. To calculate the 
probability of failure, 3 quadrature points along each axis are used. The calculation of the probability of failure in 
the proposed DRM has less error compared to MCS result than existing DRM as shown in Table 2. The effect of 
the proposed method is shown visibly in Fig. 3 which includes the location of quadrature points and the contours 
of the performance function in V: − VH plane which are obtained by the proposed method and existing method, 
respectively. The contours show that the proposed DRM minimizes the cross-term effect of the performance 
function. 
 

  
(a)                                 (b) 

 
Fig. 3. V: − VH plane contour in 3-D example : (a) MPP-based DRM; (b) Proposed DRM 

 
Table 2. Probability of failure calculation by two methods for 3-D example 

 
 MPP-based DRM 

(3pts) 
Proposed DRM 

(3pts) 
MCS 

(10N  samples) 

FP  (%) 4.14 6.50 7.90 

Error (%) 47.59 17.7 - 
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7. Conclusion 
To improve the accuracy of the existing MPP-based DRM, it is proposed to use eigenvectors of the Hessian matrix 
when transforming to the rotated standard normal V-space. To verify the accuracy improvement in calculation of 
the probability of failure, a 3-D example with high order is tested and the results show that using the proposed 
MPP-based DRM is more accurate than the existing method. More research on the proposed MPP-based DRM 
and application to Reliability Based Design Optimization (RBDO) problems are ongoing. 
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