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1. Abstract
A novel numerical-experimental methodology for the identification of elastic moduli of orthotropic structures is
proposed. Special attention is given to the elastic moduli of laminated electrical steel sheets, which are widely
used for the magnetic cores of electric motors and generators. The elastic moduli are determined specifically for
use with finite element vibration analyses, such that the dynamic characteristics of such structures can properly be
predicted by using the identified elastic moduli. The identification problem is formulated as an inverse problem
with nonlinear least squares fit between the measured and computed modal frequencies. The problem is sequen-
tially solved with increasing number of modes that are carefully yet automatically selected based on the analytic
sensitivity of the modal frequencies on the elastic moduli. Using the results of numerical experiments, it is shown
that the optimal solution obtained by the proposed method converges to the accurate elastic moduli as the number
of modes increases. Furthermore, it is also shown that the method not only converges faster but also is numeri-
cally more stable than conventional methods. Finally, the method is applied to the experimentally-obtained modal
frequencies of the laminated electrical steel sheets, and successfully identifies the elastic moduli where the finite
element modal analysis can reproduce accurate modal frequencies.

2. Keywords: Inverse problem, Nonlinear least squares, Orthotropic material, Electrical steel sheets, Laminated
plates.

3. Introduction
There is a growing demand to model and predict the dynamic characteristics of the electric machines, as electri-
fied vehicles such as hybrid-electric vehicles and electric vehicles become prevalent. One of the most important
yet challenging tasks is the accurate modeling of the modal characteristics of the electric machines. Without the
accurate modal characteristics, even if the magnetic force excitation is accurately predicted, it is impossible to ac-
curately capture the forced response of the electric machines [1]. In particular, we shall pay special attention to the
modal characteristics of the laminated electrical steel sheets, which are widely used as the magnetic cores of the
electric machines. The elastic behavior of the laminated electrical steel is represented by orthotropic constitutive
relationship between stress and strain. In this paper, a novel elastic moduli identification method for orthotropic
structures is proposed, which is based on the nonlinear least squares (LS) parameter identification procedure using
measured mode shapes and frequencies, in conjunction with finite element (FE) model updating technique. The
proposed method incorporates the LS procedure with successive increments of the number of modal frequencies
and initial condition updates, which enables fast and accurate convergence of the identification procedure.
This paper is organized as follows. Mathematical formulation of the nonlienar LS problem is described in Section
4. In Section 5, the validity of the proposed approach is confirmed by numerical experiments. In Section 6, the
methods are applied to the measured mode shapes and frequencies of the laminated electrical steel sheets, and the
effectiveness of the proposed methods is discussed. Conclusions are provided in Section 7.

4. Mathematical formulation
4.1 Nonlinear least squares minimization
Let us suppose that the space occupied by the vibrating body of interest is denoted as Ω ⊂ R3, and the body of
interest consists of a material with orthotropic constitutive relationship. Assuming that a set of n modal frequencies
of the body has been extracted from the results of modal testing, they are denoted as f̃k, k = 1, . . . ,n. With the
measured modal frequencies, we try to identify the set of nine independent engineering elastic moduli of the
orthotropic material, which is denoted here as p= [E1,E2,E3,G12,G23,G13,ν12,ν23,ν13]

T. Denoting numerically-
obtained modal frequencies with p as fk(p), k = 1, . . . ,n, we solve the following minization problem:

minimize
p

Ln(p) :=
1
2
‖rn(p)‖2, (1)
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where ‖‖ denotes the 2-norm of a vector, rn(p) = fn(p)− f̃n(p), fn(p) = [ f1(p), f2(p), . . . , fn(p)]
T, and f̃n =

[ f̃1, f̃2, . . . , f̃n]
T. For the minimization algorithm, we assume general-purpose, gradient-based nonlinear minimiza-

tion algorithm, such as Gauss-Newton methods and quasi-Newton methods. Fundamentally, we seek the stationary
point of the function where the first order derivative of Ln(p) with respect to p vanishes, i.e.,

∇pLn(p) = 0, (2)

where ∇p denotes the vector differential operator with respect to p. It means that the derivative of the eigenfre-
quencies with respect to p needs to be evaluated because

∇pLn(p) = J
T
n (p)rn(p), (3)

where Jn(p) is the Jacobian matrix whose ith row and jth column element is denoted as

[Jn(p)]i j =
∂ fi(p)

∂ p j
, i = 1, . . . ,n, j = 1, . . . ,9. (4)

The i− j component of the Jacobian matrix can be written as:

[Jn(p)]i j =−
1

8π2 fi(p)

∫
Ω

ε̃(φi) · C̃ ·
(

∂ S̃

∂ p j

)
· C̃ · ε̃(φi)dΩ. (5)

C̃ = S̃−1 =


1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G23 0
0 0 0 0 0 1/G13



−1

, (6)

where φi denotes the ith mode shape, ε̃ denotes the Voigt notation of the Cauchy’s strain tensor, C̃ and S̃ denote
the stiffness and the compliance matrices, respectively.

4.2 Successive augmentation of the least squares problem and initial condition updates
There are three key factors that greatly affect the results of the minimization problem: the number of modes, the
initial conditions, and the types of modes used in the objective function. In this paper, we propose guidelines to
deal with these factors to improve the accuracy of the solutions of the LS problem.
• Number of modes and initial conditions
In general, it is possible to improve the solution of the LS problem by using more measurement data than the
number of paramters to be determined. In our case, if the number of modes exceeds the number of the elastic
moduli, it becomes an over-determined problem, and the LS solution is expected to be improved. Namely, we
augment the LS problem by adding more residuals to be minimized.
The initial condition for the minimization problem is another important factor, considering that this minimization
problem is an ill-posed problem [2]. That is, a “good” initial condition that is close enough to the optimal solution
should be selected a priori, before starting the minimization. Even though it is not always possible to choose a good
initial condition, a simple alteration to the algorithm would alleviate this difficulty. Namely, during the successive
augmentations of the LS problem, the initial values p0 for the minimization of Lk(p) are updated to the converged
solution of Lk−1(p).
•Mode selection algorithm
When forming Eq. (1), it is not obvious which vibration modes should be used for the accurate determination of
the elastic moduli. Therefore, we try to construct the mode selection criteria for Eq. (1) based on the following
arguments. The Taylor expansion of the function Lk(p) around a specific point p̄ up to second order gives the
following quadratic function:

L̃k(p) := Lk(p̄)+ [∇pLk(p̄)]
T [p− p̄]+ 1

2
[p− p̄]T∇2

pLk(p)[p− p̄]. (7)

where ∇2
pLk(p) is the Hessian matrix that can also be written as

∇2
pLk(p) = J

T
k Jk +

(
∇2

pfk
)T
rk. (8)
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Figure 1: Numerical model with orthotropic material model

If we employed the exact Newton method, the algorithm would attempt to solve the minimization of Eq. (1) by
successively finding the stationary point of the quadratic function L̃k(p) at each iteration, i.e., ∇pL̃k(p) = 0. It
means that the increment ∆p at each iteration would be determined by solving the following linear equations:[

JT
k Jk +

(
∇2

pfk
)T
rk

]
∆p=−∇pLk(p). (9)

When the iteration reaches near the stationary point, rk ≈ 0 and ∇2
prk can also be assumed to be very small.

Therefore, if ‖rk‖2 is very small, or L̃k(p) is evaluated near the stationary point, the Eq. (9) reduces to the
following relationship: (

JT
k Jk

)
∆p≈−∇pLk(p). (10)

One may notice that Eq. (10) implies that the accuracy of the increment ∆p is influenced by the nature of the matrix
JT

k Jk. That is, if the condition number of the matrix JT
k Jk, or equivalently that of Jk(p) is large, then the solution

we obtain by solving Eq. (10) can be inaccurate. It means that it is important to keep the condition number of JT
k Jk

as small as possible, for the accurate and stable determination of the increment ∆p. Therefore, we propose that the
mode sequence at each minimization be selected, such that the condition number of Jk is the smallest among the
possible set of modes. Denoting the minimizer of Lk(p) as p̂k, Lk+1(p) is updated such that:

Lk+1(p) = Lk(p)+
1
2
(

f`(p)− f̃`
)2
, (11)

where the mode index ` is found such that:

κ ([Jk(p̂k),∇p f`(p̂k)]) = minimum, (12)

where κ denotes the condition number, or the ratio between the maximum and the minimum singular values of the
matrix. A more qualitative statement of this argument is that the algorithm chooses the modes so that the columns
of Jk become as linearly-independent as possible.

5. Numerical validation: rectangular thick plate with orthotropic material model
In this section, the nonlinear LS problem presented in the previous section is examined using a numerical example.
For the FE modal analyses as well as the evaluation of the eigenvalue sensitivity, COMSOL Multiphysics®was
used. The BFGS algorithm [3] was employed for the minimization of Eq. (1), and implemented in the Matlab®

environment. The numerical model is presented in Fig. 1, where L1 = 0.2[m], L2 = 0.2[m], and L3 = 0.05[m].
The material model is an artificial orthotropic material with E1=150GPa, E2=180GPa, E3=100GPa, G12=60GPa,
G23=70GPa, G13=80GPa, ν12=0.1, ν23=0.2, and ν13=0.3. The analysis procedure is stated as follows. First, the
modal analysis was conducted by an FEA, and the eigenvalues and the associated eigenvectors were exctracted.
These eigenfrequencies are herein treated as the "measured" modal frequencies from a (numerical) experiment,
and used as f̃k, k = 1, . . . ,20. Second, the eigenvectors were sampled at the evenly-spaced points on the top surface
of the model as shown in Fig. 1. This simulates the vibration measurement of the mode shapes with a limited
number of measurement locations. The Eq. (1) was then minimized using the “measured” data.
To demonstrate the advantage of the proposed algorithm, the minimization without the initial condition updates
and the mode selection was also conducted, and the results are compared with those obtained by the proposed
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Figure 2: Convergence histories of the parameters (without initial condition updates and mode selection)
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Figure 3: Convergence histories of the parameters (with initial condition updates and mode selection)

algorithm. The initial values of p for both algorithms were assumed to be the elastic moduli for an isotropic mate-
rial, where E1=200GPa, E2=200GPa, E3=200GPa, G12=76.9GPa, G23=76.9GPa, G13=76.9GPa, ν12=0.3, ν23=0.3,
and ν13=0.3. The convergence histories of the elastic moduli without and with the initial condition updates and
mode selection algorithm are shown respectively in Figs. 2 and 3. The dashed-lines in the figures show the target
values for each modulus. As can be seen in Figs. 2 and 3, the converged solutions are improved as the number
of modes increases for both cases. However, as seen in Fig. 2, the convergence histories fluctuates as the number
of modes changes, and the algorithm even fails to identify the target values for ν23, and ν13. On the contrary, the
proposed method successfully determines all the elastic moduli with only 14 modes. Another advantage of the
proposed approach with the mode selection is that the convergence histories of the parameters are smoother than
those without the initial condition updates and the mode selection. Thus, we can almost be sure that the converged
solutions we obtain from the minimizations can be improved by adding more modes.

6. Application to laminated electrical steel sheets
In this section, we discuss the application of the proposed method to the identification of the elastic moduli of
the laminated electrical steel sheets. The photograph of the test specimen is shown in Fig. 4. The test specimen
consists of electrical steel sheets with nominal thickness of 0.35mm, which are bonded together by adhesive layers,
where L1 = 0.199m, L2 = 0.199m, and L3 = 0.0518m. The total number of the sheets is 146, and the total mass
of the test specimen is 15.8kg. Using the specimen, modal testing was conducted. The mode shapes with the asso-
ciated mode frequencies are shown in Fig. 5. For the first five modes, the mode shapes show typical out-of-plane
bending vibration modes of plates. The 6th and the 7th modes, however, show slightly distorted higher-order vi-
bration shapes that do not typically appear in low frequency ranges of the vibration modes of plates. This appears
to be caused by the inhomogeneity of the microscopic adhesive layers between the electrical steel sheets. The 8th
through the 12th modes are the typical in-plane bending vibration modes of plates.
Using the modes obtained by the experimental modal analysis, the proposed elastic moduli identification method
was applied, and the elastic moduli of the test specimen were determined. The initial values of the elastic moduli
were E1=180GPa, E2=180GPa, E3=100GPa, G12=76.9GPa, G23=7.69GPa, G13=7.69GPa, ν12=0.3, ν23=0.3, and
ν13=0.3. It is noted that preliminary studies revealed that starting the algorithm with the initial values that were
used in the numerical validation would result in very slow convergence. Therefore, the initial values were chosen
such that the model is “softer” in the direction of lamination (x3), i.e., E3 < {E1,E2} and {G23,G13} < G12. The
Poisson’s ratios were simply set to the typical values used for isotropic steel.
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Figure 4: Photograph of the test specimen: laminated electrical steel sheets

(a) f̃1 =2,886Hz (b) f̃2 =4,224Hz (c) f̃3 =4,808Hz (d) f̃4 =5,264Hz (e) f̃5 =5,815Hz (f) f̃6 =7,805Hz

(g) f̃7 =8,041Hz (h) f̃8 =10,368Hz (i) f̃9 =10,443Hz (j) f̃10 =10,698Hz (k) f̃11 =12,603Hz (l)f̃12 =14,691Hz

Figure 5: Measured mode shapes and associated modal frequencies

The minimization histories of the elastic moduli with respect to the number of modes are shown in Fig. 6. The
converged elastic moduli with n = 12 were E1=204GPa, E2=198GPa, E3=99.8GPa, G12=81.2GPa, G23=11.7GPa,
G13=13.6GPa, ν12=0.30, ν23=0.29, and ν13=0.31. The errors between the measured frequencies and those com-
puted with the initial values p0, and the converged solution with the proposed method are shown in Fig. 7. As
we can see in Fig. 7, all frequency errors decrease when the converged solution is used. Indeed, the average error
computed with the initial value p0 is 11.75%, whereas that computed with the converged solution by the proposed
method decreases down to 1.72%. This shows the validity of the proposed method.

Conclusions
In this paper, we proposed an elastic moduli identification method for orthotropic media based on nonlinear LS fit
between the measured and the computed modal frequencies, with accelerated convergence and improved accuracy.
In Section 4, the nonlinear LS problem was formulated, and a novel analysis procedure has been proposed, which
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Figure 6: Convergence histories of the parameters for laminated electrical steel sheets
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Figure 7: Errors in the predicted natural frequencies

(a) f1 =2,814Hz (b) f2 =4,201Hz (c) f3 =4,706Hz (d) f4 =5,467Hz (e) f5 =5,582Hz (f) f6 =7,863Hz

(g) f7 =8,006Hz (h) f8 =10,214Hz (i) f9 =10,643Hz (j) f10 =10,754Hz (k) f11 =12,884Hz (l) f12 =14,730Hz

Figure 8: Computed mode shapes and associated modal frequencies

improves the LS solutions by successive increments of the number of modal frequencies and initial condition up-
dates. In Section 5, the minimization method was applied to a numerical example, and its validity was confirmed.
In Section 6, the method was applied to the identification of the elastic moduli of the laminated electrical steel
sheets, and it successfully determined the elastic moduli where the average frequency error is minimized.

References
[1] A. Saito, H. Suzuki, M. Kuroishi, and H. Nakai. Efficient forced vibration reanalysis method for rotating

electric machines. Journal of Sound and Vibration, 334 (2015) pp.388–403.

[2] G.M.L. Gladwell. Matrix Inverse Eigenvalue Problems. Dynamical Inverse Problems: Theory and Applica-
tion. G.M.L Gladwell and A. Morassi (Eds.), Springer Wien New York, 2011, pp.1–28.

[3] D. G. Luenberger. Linear and Nonlinear Programming, second edition. Addison Wiley, 1989.

6


