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1. Abstract  
Rising complexity of the automotive industry results in enormously increasing of disciplines. It becomes highly 
important to find the best compromise among these disciplines in the automotive design process. The coupling 
strategy among different disciplines and the algorithms employed to solve optimization problems are two core 
aspects defined by the architecture of multidisciplinary design optimization (MDO). In this paper, a MDO 
architecture is investigated to decide the best compromise among multiple working conditions (frontal impact, 
frontal offset impact, lateral impact, rear impact, auto-body stiffness and mode cases) with respect to auto-body 
lightweight design. Since the selection of optimization algorithms has a significant influence on the optimization 
time and the final solution, particle swarm optimization (PSO) algorithm is modified and promoted to 
accommodate different load cases. The established MDO architecture is applied to a lightweight design 
application of an auto-body, and the results verify its effectiveness and validity. 
2. Keywords: Multidisciplinary design optimization; Particle swarm optimization; Collaborative optimization; 
Auto-body lightweight design; Kriging modeling technique. 
 
3. Introduction 
Because of rising complexity of industrial development, the number of disciplines to be concerned in automotive 
design has been increased enormously. The different disciplines, such as multiple crash cases, NVH and so on, 
often have conflicting objectives. So appropriate design strategies which provide an opportunity to integrate each 
discipline and conduct compromise searching process are required instead of solving each discipline separately 
[1]. Hence, multidisciplinary design optimization (MDO) has been investigated and introduced to achieve the best 
compromise solution. 

MDO aims to utilize the couplings among different disciplines to search the global optimal design [2], and 
has been applied in many engineering systems, such as bridges [3], buildings [4,5], automobiles [6,7], ships [8,9] 
and so on. The coupling strategy of different disciplines and the algorithms employed to solve an optimization 
problem are two core aspects defined by the MDO architecture which significantly influence the solution time and 
optimal searching efficiency [10]. With respect to the auto-body design process, the traditional gradient-based 
methods or local search strategies are unsuitable for solving multidisciplinary optimization due to the multimodal 
character of the objective and the numerical noise encountered in the crash cases [1]. So global optimization 
algorithms should be introduced into the MDO optimization procedure. Particle swarm optimization (PSO), 
proposed by Kennedy and Eberhart [11], is a global optimization algorithm. Its principle is derived from the 
cooperative behavior appeared among species like birds, fishes etc. Because of its simplicity of implementation 
and strong capacity to quickly find a reasonably satisfactory solution, the PSO algorithm is becoming very popular 
and has been widely used. However, PSO suffers from premature convergence problem because of the quick loss 
of diversity in the solution search. In this research, the basic PSO is modified by OLHD  technique and a reset 
operator to enhance the diversity among particles. 

In this paper, multiple working conditions (frontal impact, frontal offset impact, lateral impact, rear impact, 
auto-body stiffness and mode cases) are taken into consideration. Krging modeling technique is employed to 
surrogate the time consuming finite element simulation. A MDO architecture based on Collaborative Optimization 
(CO) method is established so that each sub-system can control its own design variables and is only bounded by its 
own corresponding constraints. Then, with the purpose of improving the efficiency and accuracy of the 
optimization problem, PSO optimizer is applied and modified according to the property of each discipline. The rest 
of this paper is organized as follows: in Section 4, the technical base is described. In Section 5, the MDO 
architecture for the auto-body design is presented in detail. The lightweight design process of a car model is 
depicted in Section 6 and Section 7 is the conclusions of our work. 
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4. Technical base 
 
4.1. Collaborative Optimization 
Collaborative optimization (CO), initially developed by Braun [12], is a discipline feasible constraint method 
whose architecture is designed to improve disciplinary autonomy while satisfying interdisciplinary compatibility. 
The problem is decomposed into disciplinary sub problems sketched in Figure 1. Each sub-discipline controls its 
own design variables and is bounded by its own specific constraints. Interdisciplinary compatibility is the 
objective of each sub-discipline optimizer. At the system-level, an optimizer is employed to coordinate the whole 
process and optimizes the overall objective.  

 
Figure 1: Collaborative optimization 

 
4.2. Particle swarm optimization 
The PSO method maintains a population of candidate solutions located in the design space of the fitness/cost 
function. Each potential solution is called particle and the entire population of candidate solutions is called swarm. 
Fitness function values of all the particles are computed in the current positions. Each particle abides two rules, 
trying to return to its previous best location as well as pursuing the best position of its group. The positions of 
particles are updated iteratively based on the algorithm. Based on the rules, the particle swarm moves like a group. 
The overall behavior prompts all particles to go forward the optimal solutions of the fitness/cost function. 

In the standard Particle swarm optimization, consuming a problem with D-dimensions, a potential solution is 
expressed as the velocity and position of a particle. Vector i

kx  stands for the position of the thi  particle while 

vector i
kv  is the velocity. i

kp  represents the best previously visited position of each particle and g
kp  is the global 

best position found by particle swarm. The whole swarm is controlled by equations (1) and (2). 
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Equation (1) is the velocity update equation. Its first part is the initial velocity with inertia factor ω  which 
provides momentum for particles to move across the design space [13]. Shi and Eberhart have proposed a linearly 
varying inertia weight which had a significant improvement in the performance of standard PSO [14], shown as 
equation (3), in which iter  represents the current generation and 

maxiter  is the maximum generation. The second 
part of equation (1) is the cognition component represents the personal behavior of a particle and encourages each 
particle to move toward its own best previous position. The third part is called the social component which stands 
for cooperation behavior among particles [15]. The social component always pulls the particles moving forward 
the global best position. 1c  is named as cognitive scaling parameter and 2c  is the social scaling parameter [16]. 1r  

and 2r are two uniformly distributed random numbers within the range [0,1].  
 
4.3. Metamodels construction 
Metamodeling techniques are widely used to construct surrogate models, since simulation of automotive finite 
element models are computationally expensive [17,18]. The Kriging model [19] is employed in this research. The 
stochastic process is used in Kriging model for predicting the values of unknown points. Sample points are 
interpolated to estimate the trend of the stochastic process by Gaussian random function. The model has been 
proved applicable to represent the multimodal and nonlinear functions. The accuracy of the metamodels with 
respect to finite element models is essential for response prediction. The generally used 2R  is verified in this 
research. The objective-oriented sequential sampling method is implemented to improve the precision of the 
constructed metamodels [20]. 
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5. MDO architecture for the auto-body lightweight design 
In this research, six load cases are employed (frontal impact, frontal offset impact, lateral impact, rear impact, 
auto-body stiffness and auto-body mode conditions shown in Figure 2) to conduct lightweight design of autobody. 
This Section has two parts. The first describes the modified PSO algorithm and the established MDO architecture 
is presented in the second part.  
 
5.1. Modified PSO algorithm 
In order to ensure a full coverage of the design space, the OLHD technique [21] is used to generate the first 
generation of particle swarm instead of the uniformly random distributed method (labeled as PSO optimizer 
version 2). In order to make a distinct comparison, particles are generated in two-dimensional space by the 
traditional method and OLHD technique, shown in Figure 3. It is clearly found that the distribution of particles 
generated by OLHD technique in Figure 3(b) is more reasonable than the random method in Figure 3(a).  

From the observation of the mathematical experiments, the convergence rate of the PSO optimizer version 2 
is slightly lower than the basic PSO in the beginning of the optimization procedure because of the scattering 
distribution of initial particles, but the former always finds a better solution at last. So the optimization ability of 
the basic PSO is successfully improved by OLHD technique.  
 

 
 

Figure 2: Load cases considered in MDO 

                    
       (a) OLHD Samples                                (b) Random Samples 

Figure 3 Comparison of initial particles in two-dimension 
 
Through experiments with numerical benchmarks, it has been observed that PSO quickly finds a relatively 

good local solution but sometimes stagnates in the local optimum for a considerable number of generations 
without any improvement. An adaptive reset operator worked on velocity is employed to enhance the global 
optimization ability of PSO (labeled as PSO optimizer version 1). When the optimization procedure is trapped into 
stagnation for several generations, the velocity of particles will be reset equation (5)  

max max
max min min

max max

( ) ( )( )*current current
reset rand

iter iter iter iterV rw V rw rw rw rw
iter iter

µ µ
− −

= ⋅ ⋅ = = − +， ，                    (4) 

randV  is randomly generated velocity matrix of particles under predefined range [-
maxV , maxV ]. µ  is a generation 

correlation coefficient which is linearly decreased along with generation. 
maxiter  is the max generation and 

currentiter  is the current generation. rw  is a velocity correlation coefficient, and its concept is derived from the 

inertia weight factor ω  of the standard PSO. Its boundary is the predefined [ minrw , maxrw ]. Following the 

searching process, the left generation number ( max currentiter iter− ) is decreased and the value of µ  is diminished, 
so that the algorithm convergence property can be guaranteed by shrinking the amplitude of resetV , while rw  
improves the distribution of reset particles in consideration of the global and local search ability. The particles are 
scattered away from the stagnation position by equation (5) after the adaptive reset operator activated. 

p stagnation resetP P V= +                                                                      
 (5) 

From the history of mathematical experiments, the reset operator will be activated when the stagnation 
judgment criterion and the predefined probability satisfied. It is obvious that the reset operator is active during the 
middle of the optimization history when the standard versions are fallen into stagnation. So the reset operator 
effectively assists the algorithm jumping out from stagnation and finding a better optimization solution. The 
amplitude of the reset process is decreased following the left generation diminished observed at the later stage of 
the optimization program, so that the convergence of the optimization program can be guaranteed. Compared with 
the modified PSO version 2, the convergence rate of this version is relatively lower, but it is more suitable for 
high-nonlinear and multimodal optimization problems benefitted from the diversity enhanced mechanism.  
 
5.2. The MDO architecture 
The flowchart of the auto-body optimization process is presented in Figure 4. 
（1）The high-fidelity finite element models are established at the first step. 
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（2） Based on design of experiment methodology [21], implement a certain number of finite element analyses to 
provide data basis for metamodel technique. 
（3） Construct metamodels by Krging technique and validate the precision of each surrogate model 
（4） Sequential sampling method based on the expected improvement criterion[20] is applied to improve the 
accuracy of each metamodel. 
（5） MDO procedure is launched after all the surrogate models have been prepared. The architecture of MDO is 
illustrated in Figure 5. In system-level, the objective is mass. The optimization constraints are derived from the 
interdisciplinary compatibility constraints and auto-body stiffness and mode cases. In consideration of the 
computational efficiency, the basic version of PSO is employed to search the optimal solution. There exist three 
sub-systems, frontal, lateral and rear impact. The frontal and frontal offset impact crash cases are included in the 
frontal impact system. According to the high non-linear property of the crash cases [1], the PSO optimizer version 
1 abovementioned is adopted to search the optimum. The second sub-system solves the lateral impact case and the 
PSO optimizer version 2 mentioned in part one is used to conduct the optimization process. The third discipline is 
the rear impact case and the PSO optimizer version 2 is employed as the optimization algorithm.  
（6） Validate the optimization solution using finite element analysis and output the verified results. 

 
 

Figure 4: The flowchart of auto-body design 

 
 

Figure 5: The MDO architecture 
 
6. The Lightweight design of an auto-body 
A B-class vehicle model is introduced in this paper illustrated in Figure 6. Strict meshing criteria are used to 
achieve the quality requirements so that the simulation accuracy can be promoted. The average mesh size is 10mm, 
while 1005019 shell elements and 22575 solid elements are contained in the full-size model. The finite element 
model has been verified and is available for further study [22,23]. The auto-body frame FE model are presented in 
Figure 7 and crash cases simulation in Figure 8. 

Multi-load cases and constraints are presented in Table 1. The variable is the thickness of each component. 
Due to limited space, the detailed variables list is not included in this paper. For auto-body stiffness and mode 
cases, 90 variables are considered. Its performance indicators are served as the constraints in system optimizer so 
that the coupling variables can be significantly decreased to ensure the searching convergence. Because of the 
similar performance indicators, the frontal and frontal offset crash cases are integrated in one sub-system. The 
objective is the interdisciplinary compatibility and the PSO optimizer version 1 is conducted for optimal searching. 
500 generations are preseted for sufficiently optimal searching. The lateral impact contains 15 variables and the 
PSO optimizer version 2 is employed. 300 generations are used for the optimization process. There are 8 variables 
in rear impact case, so the optimization searching is relatively simpler than the other two sub-systems. 100 
generations are predefined with the PSO optimizer version 2. In the system-level, the basic PSO optimizer is 
employed and 100 generations are preseted for improving computational efficiency. The particle number is set to 
20 for all the problems. 

 
Figure 6: Full size FE model 

 
Figure 7: Auto-body frame FE model 
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(a) Frontal impact 

 
(b) Frontal offset impact 

 
(c) Lateral impact 

 
(d) Rear impact 

 
Figure 8 Crash cases simulation 

In order to verify the efficiency and effectiveness of the modified PSO optimizer, a comparison MDO case is 
built with all the sub-systems optimized by basic PSO version. The predefined parameters are invariable. Because 
of the randomness of the results achieved by PSO, 30 repeated trials are conducted in these two MDO architecture. 
The best optimization result of the MDO with the modified PSO optimizer is 418.36kg, while  the comparison case 
is 435.17kg. It is obvious that the modified PSO optimizer is efficient and effective to achieve a better optimization 
solution. 

The original mass of the auto-body structure is 450kg. Round the thickness values of all the variables 
acquired from the MDO optimization procedure, and verify the feasibility by finite element analysis. The structure 
mass of the auto-body is 423.86kg after the lightweight design process and all the performance indicators are 
satisfied. So the auto-body lightweight design program based on MDO architecture and the modified PSO 
optimizer successfully achieve an outcome of 5.80% mass reduction.  

 
Table 1 Load cases description 

 
Load cases Design variables Performance indicators Constraints 

Auto-body stiffness 90 
Bending stiffness ≥11000N/mm 
Torsion stiffness ≥12000Nm/° 

Auto-body mode First-order torsion mode ≥34Hz 

Crash 
cases 

Frontal 
impact 12 

Left B-Pillar acceleration ≤40g 
Left Toe-board intrusion ≤80mm 
Right Toe-board intrusion ≤80mm 

Frontal 
offset 
impact 

21 

Left B-Pillar acceleration ≤40g 
A-Pillar deformation ≤80mm 
Left Toe-board intrusion ≤80mm 
Right Toe-board intrusion ≤80mm 

Lateral 
impact 15 

Lower rib deflection ≤32mm 
B-Pillar intrusion velocity ≤9m/s 
Door deformation velocity ≤9m/s 
Abdomen load ≤1.5kN 
Pubic symphysis force ≤4kN 

Rear 
impact 8 

Left contact force of Hydrogen bottle ≤50kN 
Middle contact force of Hydrogen bottle ≤50kN 
Right contact force of Hydrogen bottle ≤50kN 

 
7. Conclusions 
In this paper, MDO architecture for auto-body lightweight design is established and the modified PSO optimizer is 
incorporated into the optimization procedure. From the experimental results, the following conclusions can be 
summarized: 
（1） The MDO architecture based on Collaborative Optimization guarantees the disciplinary autonomy while 
satisfying interdisciplinary compatibility, so that the sub-system can be operated flexibly. For the auto-body 
lightweight design problem, different optimization algorithms can be chosen according to the character of each 
sub-system  
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（2） The optimization ability of basic PSO is successfully improved by OLHD technique and the velocity reset 
operator. The MDO comparison results demonstrate that the modified PSO version is more suitable for the 
auto-body lightweight design.  

In the future work, more load cases will be considered to incorporate into the MDO architecture while the 
problem convergence property is assured. More efficient PSO versions will be investigated to accommodate 
different requirements from multiple load cases.  
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