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1. Abstract  

Conventional wind turbine blades have been designed using fatigue life predictions based on a fixed wind load 
distribution that does not fully capture uncertainty of the wind load. This could result in early fatigue failure of 
blades and eventually increase the maintenance cost of wind turbines. To produce reliable as well as economical 
wind turbine blades, this paper studies reliability-based design optimization (RBDO) of a wind turbine blade using 
a novel wind load uncertainty model. In the wind load uncertainty model, annual wind load variation has been 
extended over a large spatiotemporal range using 249 groups of wind data. The probability of fatigue failure during 
20-year service life is estimated using the uncertainty model in the RBDO process and is reduced to meet a desired 
target probability of failure. Meanwhile, the cost of composite materials used in the blade is minimized by 
optimizing the composite laminate thicknesses of the blade. In order to obtain the RBDO optimum design 
efficiently, deterministic design optimization (DDO) of a 5-MW wind turbine blade is first carried out using the 
mean wind load obtained from the uncertainty model. At the DDO optimum design, fatigue hotspots for RBDO are 
identified among the laminate section points. For efficient sampling-based RBDO process to handle dynamic wind 
load uncertainty, instead of generating surrogate models of the overall output performance measure, which is 
20-year fatigue life, a number of surrogate models of the 10-minute fatigue damages D10 at the hotspots are 
accurately created using the dynamic Kriging (DKG) method. Using these surrogate models and the wind load 
uncertainty model, probability of failure of 20-year fatigue life at these hotspots and their design sensitivities are 
calculated at given design points. Using the sampling-based method, RBDO of the 5-MW wind turbine blade is 
carried out starting at the DDO optimum design to meet the target probability of failure of 2.275%. 
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3. Introduction 

As an expensive component in large wind turbine systems, designing reliable wind turbine blades for 20-year 
fatigue life is one of the most important factor in wind turbine design. A cost-effective design of the blades reduces 
the initial investment, and a reliable design reduces maintenance cost of the wind turbine systems. This paper 
proposes reliability-based design optimization (RBDO) process and methods for optimizing reliable wind turbine 
blades considering dynamic wind load uncertainty.  

It is challenging to accurately predict the fatigue damage/life of wind turbine blades due to various 
uncertainties from material properties, manufacturing process, and external loads. Among those uncertainties, 
dynamic wind load uncertainty is the most significant source of uncertainty affecting the fatigue reliability of wind 
turbine blades. Hence, better understanding of the dynamic wind load uncertainty is critical for the reliable 
optimum design of wind turbine blades.  

Reliability analysis of wind turbine blades considering wind load uncertainty has been studied [1-6]. 
Probabilistic models for mean wind speed have been applied to characterize the annual wind load variation [1-10]. 
Measured fatigue loadings, e.g., stress and bending moment, were applied to wind turbine fatigue and reliability 
analysis [3,4]. Traditional reliability analysis of wind turbines involves a specific distribution, e.g., Weibull 
distribution or Rayleigh distribution, of mean wind speed to account for the frequency of fatigue damage under 
different wind loads. However, by applying a fixed Weibull distribution, only deterministic fatigue life can be 
obtained because the assumed Weibull distribution is invariant in different years. The fixed Weibull distribution 
based either on wind turbine standards [11,12] or measured wind data over one year at a specific location cannot 
truly render the wind load uncertainty over a larger spatiotemporal range, for instance at different locations and in 
different years. Tarp-Johansen [5] has studied the statistical uncertainty of two parameters of the Weibull 
distribution for mean wind speed based on one-year measurements over a period of 52 years.  

Besides the mean wind speed, the fluctuations in the wind speed about the short-term mean naturally have a 
significant impact on the design loadings, as they are the source of extreme gust loads and a large part of the blade 
fatigue loading [13,14]. The distribution of turbulence intensity has been involved in the reliability analysis of 
wind turbine blades [1,6]. Another simple way to consider the wind load uncertainty is by using partial safety 
factors [11,12,15-17]. However, the spatial and temporal wind load variation cannot be represented accurately 
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using partial safety factors. In this paper, the reliability analysis of wind turbine blades applies a wind load 
uncertainty model, which considers both annual wind load variation and wind load variation in a large 
spatiotemporal range. 

Reliability-based design of wind turbine blades against fatigue failure has been studied by Ronold et al. [1], 
whose probabilistic model was applied to reliability analysis of a site-specific wind turbine of a prescribed make. 
Toft and Sørensen [18] presented a probabilistic framework for design of wind turbine blades, which requires tests 
with the basic composite materials and full-scale blades during the design process. Reliability-based design of 
wind turbines against failure under extreme condition has also been studied [19,20]. However, very few research 
has well addressed RBDO of wind turbine blades for fatigue life under wind load uncertainty. This paper presents 
RBDO of wind turbine blades for fatigue life using the developed wind load uncertainty model, by which the 
obtained RBDO optimum design satisfies a reliability requirement considering realistic uncertain wind load during 
the designed 20-year lifespan. 
 
4. Fatigue Analysis of Composite Wind Turbine Blades 
4.1. Parametric blade modelling 

A parametric composite wind turbine blade model has been developed for fatigue analysis, deterministic 
design optimization (DDO), reliability analysis and RBDO. The aerodynamic properties of the blade model, e.g., 
airfoil type, chord length, and twist angle, are the same with the 5-MW NREL reference wind turbine blade [21]. 
However, material properties and laminate schedules are different from the NREL blade. The current blade is 
composed of seven parts, which are the root, forward shear web, aft shear web, leading edge, spar cap, trailing 
edge, and tip, as shown in Fig. 1. Each part consists of a different number of panels. In total, there are 71 panels in 
the seven parts. The forward shear web, aft shear web, leading edge, and trailing edge consist of sandwich panels, 
in which composite laminates are laid at both the top and bottom surfaces and a foam core is laid in the middle. 
Other parts are made of composite laminates. Composite laminates QQ1 and P2B are selected from the 
SNL/MSU/DOE Composite Material Fatigue Database [22]. The laminate thicknesses of QQ1 and P2B in panels 
are changing in DDO and RBDO because they are connected to the design variables for DDO and RBDO. 
 
4.2. Fatigue analysis procedure 

A comprehensive fatigue analysis procedure has been developed to calculate 10-minute fatigue damage D10 
given blade design variable vector d, 10-minute mean wind speed V10, and 10-minute turbulence intensity I10. The 
design variable vector d controls the thicknesses of composite laminates used in the wind turbine blade. The 
fatigue analysis procedure is briefly explained as follows. 

Given the V10 and I10 at hub height, a 10-minute wind field realization is first simulated using TurbSim [23]. 
The simulated wind field is then used to calculate resultant aerodynamic lift force, drag force, and moment force at 
the aerodynamic centre of each blade section by AeroDyn [24]. In order to avoid stress concentration using 
resultant aerodynamic forces, detailed wind pressure obtained from XFOIL [25] is modified to match the 
aerodynamic forces calculated by AeroDyn. Then, the modified wind pressure could be applied on the blade 
surface to carry out FEA using Abaqus [26]. Detailed explanation of obtaining the modified wind pressure is 
provided in the previous work [27]. At the same time, gravity load and centrifugal load have been considered in the 
stress analysis. The non-proportional multi-axial complex stresses at section points, which indicate locations 
through laminate thickness in the wind turbine blade, is extracted out for fatigue damage calculation. A multi-axial 
fatigue damage index [28] is used to calculate the fatigue damage considering longitudinal stress σ11, transverse 
stress σ22, and shear stress σ12 in principal material coordinates. The 95% lower bounds of the probabilistic S-N 
curves and constant life diagrams (CLDs) are applied when calculating the number of allowable cycles at a certain 
stress level. Finally, the 10-minute fatigue damage at a section point is accumulated by Miner’s rule.  

In summary, the 10-minute fatigue damage D10 at a section point in the blade can be determined by design 
variable vector d, 10-minute mean wind speed V10, and 10-minute turbulence intensity I10 as 

 ( )10 10 10 10, ,D D V I= d   (1) 

 

 
 

Figure 1: Seven Parts of the Composite Wind Turbine Blade 
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5. Dynamic Wind Load Uncertainty Model 
The developed wind load uncertainty model involves both the annual wind load variation and the wind load 

variation in a large spatiotemporal range. The annual wind load variation represents variation of 10-minute mean 
wind speed V10 and 10-minute turbulence intensity I10 in a year using a joint probability density function (PDF) of 
V10 and I10. However, it is not appropriate to obtain the joint PDF of V10 and I10 directly from their marginal PDFs 
due to the correlation between V10 and I10. It is found that V10 and I10 have statistical correlation. Moreover, there is 
also a mathematical correlation between V10 and I10 because I10 is calculated by Σ10 / V10, where Σ10 is 10-minute 
standard deviation of wind speed. To exclude the mathematical correlation in the joint PDF, the joint PDF of V10 
and Σ10 is obtained first and then transferred to the joint PDF of V10 and I10. 

Based on the 249 groups of wind data, the marginal PDFs of V10 and Σ10 have been identified to be Weibull 
distribution and Gamma distribution, respectively, using the Maximum Likelihood Estimate (MLE) method [29]. 
The statistical correlation between V10 and Σ10 is represented using Gumbel copula, which is also the maximum 
likely copula type [30]. Because the transformation from the random vector (V10, Σ10) to the random vector (V10, 
I10) is a one-to-one transformation with the Jacobian of the transformation J = v10, the joint PDF of V10 and I10 could 
be derived using the joint PDF of V10 and Σ10 as 

 ( ) ( ) ( )10 10 10 10 10 10 10 10, , ,VI V Vf v i f v J f v v i vΣ Σσ= = ⋅   (2) 

where fVI and fVΣ are the joint PDFs for (V10, I10) and (V10, Σ10), respectively; v10, i10 and σ10 are realizations of V10, 
I10, and Σ10, respectively; and σ10 = v10·i10. Using the identified copula for V10 and Σ10, the joint PDF of V10 and Σ10 
can be expressed as [30] 

 ( ) ( ) ( ) ( )10 10 10 10 10 10 10 10, ,V V Vf v c v f v fΣ Σσ σ σΣ=   (3) 

where cVΣ is the copula density function for V10 and Σ10, and fV10 and fΣ10
 are the marginal PDFs of V10 and Σ10, 

respectively. Using Eqs. (2) and (3), the joint PDF of V10 and I10 can be expressed as 

 ( ) ( ) ( ) ( )10 10 10 10 10 10 10 10 10 10 10, ,VI V Vf v i c v v i f v f v i vΣΣ= ⋅ ⋅   (4) 

The marginal PDFs of Weibull distribution for V10 and Gamma distribution for Σ10 take the forms 
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respectively, where C and k are the scale parameter and shape parameter for the Weibull distribution, respectively; 
a and b are the shape parameter and scale parameter for the Gamma distribution, respectively; and Γ(a) is the 
gamma function of a. The Gumbel copula density function cVΣ for V10 and Σ10 is expressed as [30] 

 ( )
( ) ( ) ( ) ( )1 1 1/ 1/ 2 1/ln ln 1 exp

, ;VΣ

u v w w w
c u v

uv

θ θ θ θ θθ
θ

− − −− − + − −
=   (7) 

where u and v are marginal cumulative distribution functions (CDFs) of V10 and Σ10, respectively; w is equal to 

( ) ( )ln lnu vθ θ
− −+ ; and θ is the copula parameter, which can be calculated from Kendall’s tau τ as [30] 

 ( )1/ 1θ τ= −   (8) 

Based on Eqs. (4) - (8), the derived joint PDF of V10 and I10 is determined by parameters C, k, a, b, and τ. Using 
the 249 groups of wind data, 249 different sets of (C, k, a, b, τ) have been calculated. Each set of (C, k, a, b, τ) 
contains annual wind load variation. The calculated 249 sets of (C, k, a, b, τ) indicate that there is a wind load 
variation in the large spatiotemporal range, i.e., in different years and at different locations. Therefore, the dynamic 
wind load variation in the large spatiotemporal range can be represented by providing the distributions of (C, k, a, 
b, τ). These distributions are identified by the MLE method using the 249 sets of (C, k, a, b, τ). The identified 
distribution types of C, k, a, b, and τ are log-logistic, normal, generalized extreme value, Weibull, and extreme 
value distributions, respectively. The specific parameters for PDFs of C, k, a, b, and τ are obtained as well from the 
249 sets, assuming that C, k, a, b, and τ are statistically independent. Due to space limitations, these PDFs are 
omitted from presentation here.  
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6. Reliability Analysis under Dynamic Wind Load Uncertainty  
6.1. Twenty-year Fatigue Damage Calculation 

Applying the 10-minute fatigue damage D10 in Eq. (1) and the derived joint PDF of V10 and I10 in Eq. (4), the 
one-year fatigue damage D1year can be calculated as 

  ( ) ( ) ( )1 10 10 10 10 10 10 10, , , , , 52560 , ; , , , , , , d dupp upp

low low

V I

year VIV I
D C k a b f v i C k a b D v i v iτ τ= ∫ ∫d d   (9) 

where “52560” indicates the number of 10-minute periods in one year; Vlow and Vupp are the lower and upper 
bounds of V10, respectively; and Ilow and Iupp are the lower and upper bounds of I10, respectively. The one-year 
fatigue damage in Eq. (9) cannot be explicitly expressed as a function of d, C, k, a, b, and τ, due to the complexity 
of the joint PDF and 10-minute fatigue damage calculation. Thus, in practical damage calculation, the double 
integration in Eq. (9) is numerically calculated using the Riemann integral as 

 ( ) ( ) ( ), ,
1 10 10 10 10 10

1 1
, , , , , 52560 , ; , , , , , ,

m n
i j i j i j i j

year VI
i j

D C k a b P v i C k a b D v iτ τ
= =

≈ ∑∑d d   (10) 

where m and n are the number of selected V10 and I10, respectively. The probability of the V10 and I10 in (i, j) cell can 
be calculated as 

 ( ) ( ),
10 10 10 10 10 10, ; , , , , , ; , , , ,i j i j i j

VI VIP v i C k a b f v i C k a b v iτ τ= Δ Δ   (11) 

where ∆v10 and ∆i10 are the size of the (i, j) cell in directions of V10 and I10, respectively. ( 10
iv , 10

ji ) is the center point 
of the (i, j) cell. In this paper, a large range of V10 and I10 has been considered to examine the fatigue damage 
considering all possible wind conditions, i.e., combination of V10 and I10. The lower bound and upper bound of V10 
are set to be the cut-in wind speed of 3 m/s and cut-out wind speed of 25 m/s, respectively [21]. The lower bound 
and upper bound of I10 are set to be 0.02 and 1, respectively. The 10-minute fatigue analyses are run over the range 
of V10 between 3 m/s and 25 m/s in 2 m/s increments, and the range of I10 between 0.02 and 1 in 0.02 increments. 
Therefore, the number of realizations of V10 and I10 are m = 12 (i =1,…,12) and n = 50 (j =1,…,50), respectively, in 
Eq. (10). At each wind condition, a wind load probability ,i j

VIP is calculated using Eq. (11), and a 10-minute fatigue 
damage ,

10
i jD is calculated using the developed fatigue analysis procedure in Section 4.2. In this way, a 12-by-50 

wind load probability table for ,i j
VIP  and a 12-by-50 10-minute fatigue damage table for ,

10
i jD can be constructed. 

Considering the wind load variation in a 20-year range, a 20-year fatigue damage at a given design d can be 
calculated as  
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τ

τ

=

= = =

=∑

∑∑∑

d C k a b τ d

d
   (12) 

where random vectors C, k, a, b, and τ contain 20 sets of (C, k, a, b, τ) as C = [C1, C2,…, C20], k = [k1, k2,…, k20], 
a = [a1, a2,…, a20], b = [b1, b2,…, b20], and τ = [τ1, τ2,…, τ20]. The realizations of random vectors can be randomly 
drawn from the obtained PDFs of C, k, a, b, and τ in Section 5. 
  
6.2. Reliability Analysis Using Monte Carlo Simulation 

In this paper, the probability of fatigue failure is calculated using a sampling-based reliability method that uses 
Monte Carlo simulation (MCS). Using Eq. (12) and MCS, the probability of fatigue failure is calculated as 
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YY

Y

Y y y

y y y y
   (13) 

where Y =[X, C, k, a, b, τ], and y(i) is the ith realization of Y. It is worth noting that the realization y(i) is randomly 
generated based on the PDF of a random design vector X and the PDFs of random parameters (C, k, a, b, τ) in the 
wind load uncertainty model. In reliability analysis, the realizations of X replace the design variable vector d in 
order to consider the design uncertainty. The mean of the random design vector X is the design variable vector d in 
RBDO. Each realization y(i) includes 20 sets of (C, k, a, b, τ), which represent the wind load variation in 20 years. 
NMCS is the number of realizations for MCS. ΩF is the failure domain such that D20year(Y) > 1, and 

F
IΩ is an 
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indicator function defined as 

 ( )
1,         for 
0,        otherwiseF

FIΩ
∈Ω⎧

= ⎨
⎩

y
y    (14) 

 
7. Reliability-Based Design Optimization under Dynamic Wind Load Uncertainty  
7.1. Random Design Variables 

In RBDO, the uncertainty of composite laminate thickness due to the manufacturing process has been 
considered. The coefficient of variation (CoV) of thicknesses of QQ1 and P2B laminate are referred from the 
SNL/MSU/DOE Composite Material Fatigue Database [22]. There are seven random design variables that control 
laminate thicknesses in seven parts accordingly. A linear relationship is used to link an RBDO design variable to 
laminate thicknesses in panels of a part. The linear relationship between each RBDO design variable and the linked 
laminate thicknesses is based on the DDO optimum design, as the normalized DDO optimum design variables are 
used as the initial design variables of RBDO. Due to space limitations, the DDO procedure and results are omitted 
in this paper. The properties of random design variables for RBDO are listed in Table 1, where dL, dO, and dU are 
the normalized lower bound, mean, and upper bound of the random design variables, respectively. The CoV of a 
random design variable is equal to that of thickness of the corresponding composite laminate and is fixed in the 
RBDO process. 

 
Table 1: Properties of Random Design Variables  

 
Random Design 

Variable Distribution dL dO dU CoV Corresponding Part Composite 
Laminate 

d1 Normal 0.7811 1 3.1243 0.0323 Root QQ1 
d2 Normal 0.6820 1 2.2741 0.0323 Forward Shear Web QQ1 
d3 Normal 1.0000 1 1.9133 0.0323 Aft Shear Web QQ1 
d4 Normal 0.6014 1 2.4057 0.0323 Tip QQ1 
d5 Normal 0.8974 1 3.5897 0.0323 Leading Edge QQ1 
d6 Normal 0.4823 1 1.9291 0.0323 Trailing Edge QQ1 
d7 Normal 0.4626 1 1.3878 0.0203 Spar Cap P2B 

 
7.2. Objective Function 

The normalized total cost of composite materials that are used in the blade is set as the objective function, 
which is expressed as 

 ( )
6

0 0 07
70 0

7

4.18 1000 11.70 1000i
i

i i

d dC m m Cost
d d

⎛ ⎞
= × × + × ×⎜ ⎟
⎝ ⎠

∑d    (15) 

where 0
im (unit: ton) is the initial mass of the ith part; 0

id  is the normalized initial design variable corresponding to 
the ith part; normalized di is the current design corresponding to the ith part; i= 1, 2, …, 7; and Cost0 is the initial 
cost. According to TPI Composites, the material costs of QQ1 and P2B are taken to be $4.18/kg and $11.70/kg, 
respectively [31]. It is worth noting that the cost of the carbon/glass-hybrid-fiber-reinforced laminate P2B is 2.799 
times more expensive than that of QQ1, which is a glass-fiber-reinforced laminate. The objective function in Eq. 
(15) is minimized in the RBDO process. 
 
7.3. Probabilistic Constraints 

The probabilistic constraint is that the probability of fatigue failure in Eq. (13) at a hotspot should be smaller 
than a target probability of failure tar

FP =2.275%. Hotspots are the section points in seven parts (corresponding to 
seven design variables) that show maximum fatigue damage at the RBDO initial design. For the current RBDO 
problem, there are seven probabilistic constraints corresponding to seven hotspots, which are identified at the 
DDO optimum design. The probabilistic constraints are expressed as  

 ( )( ) tar
20 1 2.275%,       1,...,7

j

j
year FP D P j> ≤ = =Y    (16) 

In order to efficiently calculate 20-year fatigue damage in Eq. (12), accurate global surrogate models for 
10-minute fatigue damage D10 with respect to design variables have been created using the dynamic Kriging 
(DKG) method [32]. Because each RBDO constraint requires 600 D10’s corresponding to 12-by-50 different wind 
conditions (see Section 6.1), there are 4,200 D10 surrogate models for seven RBDO constraints. The design of 
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experiments (DoE) samples for creating surrogate models are sequentially sampled. In total, 1,000 DoE samples 
are used for creating all 4,200 D10 surrogate models. After the accurate surrogate models are created, the design 
sensitivities of the probabilistic constraints are calculated using MCS and score function [33].  

The ratio between true 20-year fatigue damage using the 10-minute fatigue analysis procedure and predicted 
20-year fatigue damage using D10 surrogate models is calculated. The same MCS of 20 sets of (C, k, a, b, τ) are 
used for the two types of 20-year fatigue damage. The ratios are calculated at another 1000 design points randomly 
drawn in the design domain. Table 2 shows the minimum ratio, mean ratio, maximum ratio, standard deviation of 
ratios, and number of ratios between 0.99 and 1.01 among 1000 ratios for each RBDO constraint. Because the 
numbers of ratios between 0.99 and 1.01 are larger than 950 (95%), the surrogate models are treated as accurate 
surrogate models for RBDO.  

 
Table 2: Accuracy Check for Surrogate Models  

 
RBDO 

Constraint 
Minimum 

Ratio Mean Ratio Maximum 
Ratio 

Standard Deviation 
of Ratios 

Number of Ratios 
Between 0.99 and 1.01 

1 0.9939 1.0001 1.0099 0.0013 1000 
2 0.9850 1.0002 1.0137 0.0030 990 
3 0.9617 1.0001 1.0480 0.0051 963 
4 0.9929 0.9998 1.0083 0.0019 1000 
5 0.9851 0.9999 1.0260 0.0048 957 
6 0.9771 0.9998 1.0347 0.0049 957 
7 0.9638 1.0002 1.0276 0.0030 994 

 
7.4. RBDO Formulation and Procedure 

The RBDO problem can be formulated as 

 ( )( ) tar
20

7 107

minimize      Cost( )

subject to      1 2.275%,       1,...,7

                     ,     and 
j

j
year F

L U

P D P j> ≤ = =

≤ ≤ ∈ ∈

d

Y

d d d d X

   (17) 

where Y is the 107-dimensional random vector including seven random design variables and 20 sets of (C, k, a, b, 
τ); d is the 7-dimensional design variable vector; Cost(d) is the normalized cost as shown in Eq. (15); and 20

j
yearD  is 

the 20-year fatigue damage for the jth probabilistic constraint ( )( ) tar
20 1

j

j
year FP D P> ≤Y . The flowchart of the 

RBDO procedure including global surrogate model generation is given in Fig. 2. 
 

 
 

Figure 2: Flowchart of the RBDO Procedure Including Global Surrogate Model Generation 
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8. Results and Discussion 
The RBDO procedure is successfully converged using 13 iterations. At each iteration, 200,000 MCS of 20 sets 

of (C, k, a, b, τ) are used to calculate the probabilities of failure and design sensitivities of the probabilistic 
constraints. The probability of failure was reduced from 56.902% at the RBDO initial design (DDO optimum 
design) to 2.369% at the RBDO optimum design. The histories of the normalized cost and maximum probability of 
failure among seven RBDO constraints are shown in Figure 3. Table 3 compares the RBDO initial design, RBDO 
optimum design, true cost, and weight. It is observed that through the RBDO process the cost is reduced by 8% 
while the weight is increased by 13.3%. The reason is that more cheap but heavy composite material, QQ1, is 
applied at the RBDO optimum design than that applied at the RBDO initial design. Meanwhile, a less expensive 
composite material, P2B, is chosen at the RBDO optimum design.  

 

 
 

Figure 3: Histories of the Normalized Cost and Maximum Probability of Failure among Seven RBDO Constraints 
 

Table 3: Comparison of the RBDO Initial Design and RBDO Optimum Design 
 

 d1 d2 d3 d4 d5 d6 d7 Cost ($) Weight 
(ton) 

RBDO Initial 
Design 1 1 1 1 1 1 1 101331 17.7473 

RBDO Optimum 
Design 1.1885 2.1922 1.9132 0.6987 0.9968 1.3262 0.5413 93224 20.1080 

 
9. Conclusions 

The RBDO of wind turbine blades for fatigue life under wind load uncertainty is investigated in this paper. The 
wind load uncertainty model could provide realistic uncertain wind load through the designed 20-year lifespan. A 
reliability analysis method for wind turbine blades under the wind load uncertainty model has been developed. 
Based on the reliability analysis method, RBDO has been carried out to obtain fatigue reliable design for a 20-year 
lifespan considering wind load uncertainty. The obtained RBDO optimum design minimizes the material cost and 
reduces the probability of failure to 2.369% based on the current surrogate models. This research demonstrates that 
applying RBDO methods to wind turbine blades could provide safer and more economical designs considering 
wind load uncertainty.  
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