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1. Abstract  
The enhanced second-order reliability method (eSORM) is proposed in this study in order to improve accuracy in 
estimating a probability of failure. Conventional SORM additionally approximates an already approximated 
quadratic performance function to a parabolic surface, indicating that those methods are based on an incomplete 
second-order Taylor expansion of the performance function. This additional approximation means a loss of 
accuracy in estimating the probability of failure. The proposed SORM utilizes the importance sampling to 
calculate the probability of failure of a complete second-order Taylor expansion of the performance function 
without the parabolic approximation, so it shows better accuracy compared to the conventional SORM methods. 
The proposed SORM method also utilizes an approximated Hessian of the performance function by using the 
symmetric rank-one update in Quasi-Newton method, which means that additional function calls are not required 
except the computation used for MPP search. In addition to the improvement of the accuracy, stochastic sensitivity 
analysis is performed in the proposed method by applying the importance sampling to the quadratically 
approximated performance function. Therefore, the second-order sensitivity of the probability of failure as well as 
the first-order one can be easily computed in the proposed method without additional function calls.  
2. Keywords: Reliability analysis, Second-order reliability method, Stochastic sensitivity analysis, Importance 
sampling, Approximated Hessian 
 
3. Introduction 
In a reliability analysis, it is quite difficult to estimate the probability of failure defined as a multi-dimensional 
integration over a nonlinear domain in a real engineering problem especially including finite element analysis. 
Hence, reliability methods based on function approximation are commonly used such as first-order reliability 
method (FORM) [1], second-order reliability method (SORM) [2-5], and dimension reduction method (DRM) 
[6-8]. Those methods approximate the performance function at the most probable point (MPP) which has the 
highest probability density on a limit-state surface and can be obtained by searching the minimum distance from 
the origin to the limit-state surface in the standard normal space (U-space). FORM which linearizes the 
performance function at MPP is the most commonly used reliability method due to its numerical efficiency. 
FORM shows reasonable accuracy when the performance function is almost linear or mildly nonlinear. However, 
FORM might give erroneous reliability estimation if the performance function is highly nonlinear. More accurate 
reliability estimation can be performed using SORM even for a highly nonlinear system since curvature of the 
performance function near MPP is considered in SORM by calculating second-order derivatives of the 
performance function. In spite of the fact that SORM is obviously more accurate than FORM, SORM is limitedly 
used in engineering problems due to the calculation of the second-order derivatives of the performance function, 
which might require huge computational cost.  
After the second-order Taylor series of the performance function is constructed at MPP using the first and 
second-order derivatives of the performance function, the approximated function is once more approximated to a 
parabolic surface, indicating that the incomplete Taylor series is used in conventional SORM methods [9]. 
Furthermore, to obtain analytical formulation to calculate the probability of failure, an additional approximation 
such as an asymptotic approximation is introduced in the conventional SORM method. These two approximations 
mean a loss of accuracy in estimating the probability of failure.  
To calculate the probability of failure more accurately without approximations additional to the quadratic 
approximation, the enhanced SORM (eSORM) method is proposed in this study. The proposed eSORM utilizes 
the importance sampling to calculate the probability of failure of the complete second-order Taylor expansion of 
the performance function without the parabolic approximation. Thus, it shows better accuracy compared to the 
conventional SORM methods. Sampling methods [10-12] such as the Monte Carlo Simulation (MCS) and the 
importance sampling estimate readily the probability of failure using the stochastic sampling because the complex 
analytical formulation is not required in the sampling method. In addition to the calculation of the probability of 
failure, stochastic sensitivity analysis is also readily performed without additional function calls in the sampling 
method [13]. However, the computational demand for the sampling method is generally prohibitive if an 
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engineering problem including virtual simulation such as finite element analysis is considered. Since the proposed 
eSORM applies the importance sampling not to the original performance function but to quadratically 
approximated function, the required computational cost except for the Hessian calculation is negligible. The 
proposed eSORM method also utilizes an approximated Hessian of the performance function by using the 
symmetric rank-one update in Quasi-Newton method, which means that additional function calls are not required 
except the computation used for MPP search [14]. In addition to the improvement of the accuracy, the stochastic 
sensitivity analysis is performed in the proposed method by applying the stochastic sensitivity analysis of the 
sampling method to the quadratically approximated performance function. The second-order sensitivity of the 
probability of failure as well as the first-order one can be easily computed in the proposed method without 
additional functional calls.  
 
4. Enhanced second-order reliability method (eSORM) 
4.1. FORM and SORM 
The probability of failure can be defined as a multi-dimensional integral as [15] 
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where [ ]P ⋅  is a probability function, iX  is a random variable and ix  is a realization of iX . ( )fX x  is a joint 
probability density function of X , and ( )G X  is a performance function such that ( ) 0G >X  is defined as failure 
and ( ) 0G =X  is defined as a limit-state equation. Due to difficulties in computing the multi-dimensional integral 
in Eq. (1), FORM linearizes the performance function ( )G X at a most probable point (MPP) *u  in U-space 
obtained by the transformation [16] as 

 * *( ) ( ) ( ) ( )TG g g g= ≅ +∇ −X U u U u  (2) 

FORM is the most commonly used reliability analysis method due to the computational efficiency, and it shows 
reasonable accuracy in calculating the probability of failure for linear and mildly nonlinear performance functions. 
However, the error incurred by the linearization becomes considerable when the performance function is highly 
nonlinear. For this reason, SORM approximates  the performance function quadratically given as [9] 
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where H is the Hessian matrix evaluated at MPP in U-space. Equation (3) is transformed to V-space and is 
rewritten as  
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and V-space is transformed using the orthogonal 

transformation =u Rv . R  is an N N×  orthogonal rotation matrix whose Nth column is g
g

∇
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using Gram-Schmidt orthogonalization such that R  is written as [ ]1 |=R R α  where 1
T =α R 0 . In order to obtain 

the closed-form formula of the probability of failure, second-order approximated function in Eq. (4) is further 
approximated to a parabolic surface by neglecting all cross terms between  V  and NV  as follows 
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Based on the parabolic approximation in Eq. (5), Breitung [3] proposed a simple formula for the probability of 
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failure with additional approximations such as an asymptotic approximation, which is given by 
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In SORM, errors due to the approximations can be categorized as follows [9] 
Type 1: Error due to approximating the performance function by the second-order Taylor expansion. 
Type 2: Error due to further approximating the second-order approximated function to the parabolic surface. 
Type 3: Error due to the additional approximations to obtain the closed-form formula for the probability of 

failure. 
The error of type 1 cannot be eliminated unless higher-order Taylor expansion is constructed. The parabolic 
approximation in the error of type 2 means that the conventional SORM methods have been based on an 
incomplete second-order Taylor expansion, and the approximation in type 3 leads to the additional loss of accuracy 
in estimating the probability of failure. 
 
4.2 The proposed eSORM 
In order to improve accuracy in estimating probability of failure in SORM, the enhanced second-order reliability 
method (eSORM) is proposed in this study by utilizing the stochastic sampling method. Since eSORM calculates 
the probability of failure based on the complete second-order Taylor expansion of a performance function, its 
accuracy is considerably improved compared to the conventional SORM methods. The approximated Hessian of 
the performance function is used in this study, indicating that additional function calls are not required except the 
computation used for MPP search [14]. Furthermore, the second-order sensitivity of the probability of failure as 
well as the first-order sensitivity can be readily computed in the proposed eSORM. 
By introducing an indicator function for failure region, the probability of failure in Eq. (1) can be rewritten as its 
expectation as [17] 
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where nrv means the number of random variables and ( )
f

IΩ x is the indicator function which is defined as 
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where fΩ is the failure region which is defined as ( ) 0G >X . In order to calculate the probability of failure in Eq. 

(7) using the stochastic sampling method, numerous function calls are required which is computationally very 
expensive and almost impossible if the computer simulation is included. Hence, instead of the original 
performance function, the quadratically approximated performance function defines the failure region in Eq. (8) in 
the proposed method as follows 

 ˆ
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In Eq. (9), the failure region ˆ
fΩ  is defined using the second-order Taylor expansion of the performance function 

as  

 { }ˆ : ( ) 0f QGΩ ≡ >x x  (10) 

where ( )QG x  is the quadratic performance function approximated in the original space (X-space) at MPP. Since a 
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reference point of the second-order Taylor expansion is MPP in SORM, the approximation is accurate near MPP 
and is the most accurate at MPP. Hence, the importance sampling method selecting MPP as a sampling center is 
performed to calculate the probability of failure about the quadratic performance function ( )QG x  in this study as 

 
nrv ˆ ˆ

( ) ( )
( ) ( ) ( )

( ) ( )f f
f

f fP I h d E I
h hΩ Ω

 
= =  

 
∫ X X

R

x xx x x X
x x

 (11) 

where ( )h x  is an instrumental density function for the importance sampling.  
The proposed eSORM is based on the complete second-order Taylor expansion without the parabolic 
approximation, indicating that the type 2 error can be readily eliminated. The importance sampling is performed 
using the approximated performance function, not the original one in eSORM. Therefore, the computational cost 
to calculate the probability of failure after constructing the approximated function is negligible even though 
sufficient number of samples are evaluated. Considering that accurate calculation of probability of failure is 
possible in the sampling method with sufficient samples, the type 3 error incurred during obtaining the closed-form 
formula for the probability of failure in the conventional SORM is also easily removed. In this way, the proposed 
eSORM contains only the type 1 error and its accuracy is thus significantly improved even though the total 
computational cost of eSORM is the same as one of the conventional SORM. 
Even though SORM usually shows great accuracy in estimating probability of failure, the calculation of the 
Hessian of a performance function aggravates the numerical burden of SORM. When SORM is used within RBDO, 
this problem intensifies due to the repeated reliability assessment. Hence, the proposed eSORM utilize 
approximated SORM [14] recently proposed in order to resolve the heavy computational burden in SORM by 
using the quasi-Newton approach to approximate the Hessian. Since the approximated Hessian is used instead of 
calculating the true Hessian, the additional function evaluation except for the MPP search is not required in order 
to construct the second-order Taylor expansion of the performance function. 
 
4.3. The proposed stochastic sensitivity analysis 
This study presents the sensitivity analysis of eSORM, so that eSORM is readily utilized to obtain the accurate 
reliability-based optimum in RBDO. Since the proposed eSORM is based on the stochastic sampling method, the 
stochastic sensitivity analysis using eSORM can be performed efficiently and simply using the stochastic 
sensitivity analysis of the stochastic sampling method. In the stochastic sampling method, the sensitivity of the 
probability of failure with respect to the mean of random variables is given by [17] 
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X x  is known as the first-order score function which can be analytically obtained. If the random 

variables are correlated, the score function can be evaluated using a copula function. In a similar fashion with Eq. 
(11), Eq. (12) can be re-written using the instrumental density function and the failure region defined using the 
second-order Taylor expansion of the performance function in Eq. (10) as  
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In Eq. (13), the instrumental density function ( )h x  is independent with the design variable jµ . 
The second-order sensitivity of the probability of failure in eSORM can be readily calculated in a similar way as  
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X x  is the second-order score function which can be also analytically computed. Since the joint 

probability density function is known, calculation of the higher-order score function is very straightforward even 
for other parameters such as variance of the random variables [18]. The first and second-order sensitivity of the 
probability of failure in Eqs. (13) and (14) can be efficiently computed since the failure region ˆ

fΩ  is defined as the 
approximated performance function.  
 
4.4. Numerical example - Reliability analysis for two dimensional performance function 
Let’s consider a two dimensional mathematical example given by [19] 

 ( ) ( )1 2( ) exp 0.8 1.2 exp 0.7 0.6 5 /10g X X = − + − − X  (15) 

where 2
1 ~ (4,0.8 )X N  and 2

2 ~ (4,0.8 )X N . 
 

 
 

Figure 1: Limit-state equations in FORM, SORM and ASORM 
 

Table 1: The results of reliability analysis and stochastic sensitivity analysis in the 2-D example 

 FORM SORM 
(Breitung [3]) Proposed SORM MCS 

fP  0.240% 0.162% 0.153% 0.158% 
1/fP µ∂ ∂  -0.00627 - -0.00410 -0.00424 
2/fP µ∂ ∂  -0.00695 - -0.00455 -0.00466 

2
1 1/fP µ µ∂ ∂ ∂  - - 0.00916 0.00960 

2
1 2/fP µ µ∂ ∂ ∂  - - 0.0118 0.0121 

2
2 2/fP µ µ∂ ∂ ∂  - - 0.0116 0.0119 

F.E. 8a 8a + Hessian 8a 107 
a  The number of function evaluation and sensitivity analysis for MPP search 

 
Figure 1 illustrates the original and approximated performance functions at MPP in X-space. The approximated 
performance function of ASORM is obtained using the Hessian approximated by SR1 update. Since the original 
performance function has a large curvature near MPP, the linearly approximated function does not sufficiently 
describe the nonlinearity of the original function. As illustrated in Fig. 1, since the functions in SORM and 
ASORM locally approximate the original function near MPP quite well, the accurate reliability can be estimated 
by applying the importance sample selecting MPP as a sampling center to the quadratically approximated function. 
Table 1 shows results of the reliability analysis. In order to obtain the reference solution, Monte Carlo simulation 
(MCS) with sample size of 107 is performed. Due to the high nonlinearity as illustrated in Fig. 1, FORM shows 
significant error in estimating the probability of failure as well as the stochastic sensitivity. While SORM proposed 
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by Breitung reduces the error of the probability of failure by calculating the Hessian of the performance function, it 
is quite difficult to calculate the stochastic sensitivity due to the absence of research on the stochastic sensitivity in 
SORM. The proposed eSORM evaluates accurate probability of failure by using the approximated Hessian. 
Furthermore, second-order sensitivity as well as first-order one is accurately calculated. In spite of the 
improvement in terms of accuracy, additional function calls are not required after MPP search since the proposed 
method uses the approximated Hessian utilizing the previous derivative information. 
 
5. Conclusions 
An accurate and efficient reliability analysis method is proposed in this paper. By utilizing the importance 
sampling to estimate the probability of failure and its sensitivities, the proposed eSORM can achieve better 
accuracy than conventional SORM methods since the complete second-order Taylor expansion of a performance 
function is used. In the proposed eSORM, SR1 update is also utilized using derivatives data obtained during MPP 
search in order to approximate the Hessian of the performance function. In this way, eSORM requires computation 
only used in MPP search, indicating that the proposed method shows the same efficiency with FORM.  
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