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1. Abstract
Composite materials are now making their way into the primary structures of large transport aircraft and have
contributed to more efficient airframes. However, the composites used so far consist in conventional plies with
fixed angles. The introduction of the capability to manufacture tow-steered composites opens the door to more
efficient airframes by enabling more tailored structures. This paper will propose a general method for setting up
tow-steered composite structural optimization problems. This method also features a method for mapping poten-
tially thousands of discrete ply angles to a complex structure of interest. This mapping is amenable to adjoint
gradient computation, which would otherwise be prohibitively expensive for any problem with a high enough fi-
delity to be of use. While the motivation of this method is to parameterize and optimize composite tow angles,
it can handle both spatially varying tow angle and thickness variables separately and together. Several structural
problems are proposed and their results presented. From these results we show that this method offers a robust
design parameterization while being general enough to be applicable to a large number of structures. While purely
structural, the presented methodology can be extend to aerostructural design optimization.
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3. Introduction
Tow steering is a relatively new composite manufacturing technique in which a machine is used to distribute com-
posite fibers with a continuously varying direction on a surface, as opposed to the typical uni-directional laminae.
This effectively gives the designer control over the local stiffness properties of their structures and enables the
tailoring of the deflected shape for a prescribed load. This allows the structure to deform in ways that reduce stress
concentrations, or result in passive load alleviation. With such unprecedented control over the behavior of the
structure, a natural question to ask is: How can we find the optimal fiber distribution to maximize the performance
of our structure? This question can be answered with multidisciplinary design optimization (MDO). Examples
of these problems would include designing a wing to defect in flight to optimally reduce fuel burn, such as in
Kenway and Martins [8], or designing structure that can withstand complex load distributions while minimizing
weight. Spatially varying composite ply distribution optimization has been studied by Kennedy and Martins [6]
and Hvejsel et al. [1] among others. However in these cases the fiber angles were forced to take discrete values
due to manufacturing constraints. In the present paper we now relax that constraint and allow all angles to take
continuous values. Continuous tow steered optimization has been investigated by groups such as Jegley et al. [4]
and Jutte al.[5]. The difference is the paper proposes a new method for tow parametrization and optimization over
a full 3D model using gradient based optimization techniques.

4. Method
In this section, we describe the method for performing tow-steering via numerical optimization. The high-level
approach is to use a shell-element structural solver with the shell stiffness computed from the local tow angle
through first-order shear deformation theory (FSDT). The shell stiffness matrices are permitted to vary within each
element, reusing the element shape functions. The tow angle distribution across a structural component is smoothly
parametrized using B-spline surfaces, so the design variables for optimization are the B-spline control points of
this parameterization. A necessary intermediate step between the B-spline parameterization and computation of the
stiffness matrices is to perform a local tow angle transformation to reverse the effect of each quadrilateral elements
orientation because we use unstructured quad meshes, in general. We use a gradient-based optimizer with adjoint-
based derivative computation to enable optimization with a large number of design variables. Figure 1 illustrates
the steps involved in mapping the design variables to the objective and constraint functions using an extended
design structure matrix (XDSM) [9] diagram.
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B-spline Nodal tow angles

CLT Nodal stiffnesses
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Figure 1: Extended design structure matrix (XDSM) diagram showing the steps in the tow-steering optimization.
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Figure 2: B-spline control points and the resulting tow angle distributions.

Section 4.1 describes the B-spline parameterization and Sec. 4.2 discusses the FSDT formulation and the afore-
mentioned local angle transformation. Section 4.3 provides brief descriptions of the structural solver and optimizer
used in this work.

4.1 B-spline parameterization
A unique requirement of the tow-steering problem is a parameterization that ensures that the tow paths on each
structural component are smooth, while maintaining freedom for the optimizer. We achieved such a parameteri-
zation by using B-spline surfaces to define a continuous and smooth tow angle distribution within each structural
component. Additional smoothness of the fiber paths can be assured by applying a constraint on the minimum
radius of curvature of the path. The tow angle distributions are controlled by the B-spline control points, which can
be considered the inputs for the parameterization, and the outputs are the tow angle values at the nodes. For this
work, we use shell elements whose stiffness matrices vary using the same shape functions as the displacements.

We use B-splines because of their many favorable properties—they have compact support, the number of
control points and order can be arbitrarily controlled, and they have a constant Jacobian since they are linear with
respect to the control point values. A B-spline surface is simply a tensor-product generalization of a B-spline curve
and is mathematically defined as

P(u,v) =
m

∑
i=1

n

∑
j=1

Bi(u)B j(v)Ci j,

where P is the output of the B-spline surface, Ci j are the control point values, u,v are the parametric coordinates,
and Bk are the piecewise-polynomial basis functions. In this context, P(u,v) would be the tow angle evaluated at a
parametric location (u,v) in the structural component, which are assumed to be topologically 4-sided, and Ci j are
the tow angle control points. Figure 2 shows the B-spline control point locations overlayed on a constant and a
perturbed tow angle distribution.
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(a) 2D Parametric Map (b) 3D Curved Surface

Figure 3: Illustration of the local tow angle transformation.

4.2 Computation of the stiffness matrices
Given the tow angle at each node, the shell stiffness properties are calculated using FSDT; that is, we obtain the A,
B, D, and A∗ matrices. Prior to this, however, the nodal tow angles given by the B-spline parameterization must be
transformed to obtain the equivalent angle in the elements frame that would produce the same effective angle. This
transformation is pre-computed as an initialization step; starting with one of the elements, the algorithm marches
out to neighboring elements, computing the rotation of each neighboring element relative to the current one. In
each element, the pre-computed rotation is added to the tow angle from the global frame to obtain the correct
angle in the local frame. This effectively guarantees a continuous fiber distribution so long as the surface can be
transformed into the 2D mapping with at most one cut, so an example where this would not work would be a cube.
This method can be generalized for any number of control points or laminae layers. A special case of this mapping
is the case in which tow angle control points are all set to the same value, which in 3D corresponds to wrapping
parallel lines around the curvature of the surface. The parametric warping process can be seen in Fig. 3.

4.3 Structural solver and optimizer
The structural solver used in this work is the toolkit for the analysis of composite structures (TACS) [7]. TACS
is a general finite-element package that enables the implementation of custom elements and material models, but
in this work, we use shell elements with a mixed interpolation of tensorial components (MITC) formulation and
FSDT. TACS has been developed specifically for gradient-based optimization, so it provides the necessary routines
to implement the adjoint method. The adjoint method enables the computation of a gradient at a cost roughly equal
to running a single structural analysis, and this cost is independent of the number of design variables. For a detailed
explanation of the adjoint method, the reader is referred to Martins and Hwang [10].

The optimizer we use in this work is SNOPT [2], an active-set reduced Hessian Sequential Quadratic Program-
ming (SQP) algorithm. SNOPT is effective in solving large-scale nonlinear optimization problems with sparse
constraints. We interface to SNOPT from Python via the pyOpt package [11]; pyOpt is an optimization suite that
enables simple access to many optimizers with a common optimization problem definition.

5. Results

5.1 Optimization problem
Several compliance minimization problems will be considered, each of which takes the form .

minimize 1
2 uT Ku

with respect to θcp

The compliance is minimized subject to each of the control point tow angles parameterizing the design. For
every case only a single ply optimization was considered, however multi-ply optimization is possible as well. The
composite properties used for each problem are listed below in Tab. 1.

5.2. Verification of B-spline parameterization
To assess the robustness of the B-spline parameterization, we solved the optimization case originally proposed by
Hvejsel et al. [1] . In this case, a 1 m x 1 m x 0.05 m plate is clamped on all edges and subjected to a uniform
pressure loading on the top. The objective of this optimization is to minimize the compliance of the plate with
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Table 1: Material Properties

Property Value
E1 54 GPa

E2,E3 18 GPa
G12, G13, G23 9 GPa

ν12 0.25

respect to the ply angles. In the case of Hvejsel et al. [1], the angles were forced to take discrete values. In
our case, we relax that requirement and allow a continuous fiber distribution. The discrete case was used as a
benchmark and the result can be seen in Fig. 4. The continuous optimization case was run with 25, 100, and 200
control points uniformly distributed throughout the plate, and in each case, we started with all the fibers in the x-
direction. The optimization results are shown in Fig. 5. It can be seen that the optimal designs for the discrete and
continuous cases are similar in pattern: the fibers point radially towards the edges and form a diamond toward the
center. Due to their smooth nature the bi-splines have a more difficult time modeling the sharp angle changes seen
in the boundary between the inner and outer square regions. The final compliance for the 25, 100, and 400 control
point designs was 10.19 J, 9.18 J and 8.89 J, respectively. For reference, the discrete case yields a compliance of
8.83 J, while the initial zero degree case yields. It is not surprising to see that as the number of control point is
increased, the minimum compliance decreases. While it is surprising that the continuous cases did not outperform
the discrete case, it is important to note that due to the symmetry of the problem this case features local minima
as is explored in the following section. Using different initial distributions, the solution will converge to a slightly
better optimum.

Figure 4: Solution to the discrete case (8.83 J).

(a) 25 Control point case (10.19 J). (b) 100 Control point case (9.18 J). (c) 400 Control point case (8.89 J).

Figure 5: Clamped plate solutions for variable tow angles
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Figure 6: Cantilevered plate problem.

Case A: 45◦ Starting Point (8.45 J) Case B: 90◦ Starting Point (10.56 J) Case C: 92◦ Starting Point (8.45 J)

Figure 7: Cantilevered plate solutions.

5.2. Exploration of Local Minima
The next problem that was looked at was a simple cantilevered 3 m x 1 m x 0.01 m plate under a triangular
distributed load shown in Fig. 6. The objective function was again compliance, which was minimized with respect
to 40 control point ply angles. The global minimum to this problem is when all fibers point along the axis of
bending, in this case the x-axis or 0◦ This problem was run with three different initial uniform tow distributions,
of 45◦, 90◦, and 92◦, corresponding to cases A, B, and C, respectively. The model contained 9801 elements with
60,000 degrees of freedom. The results for each case are shown in in Fig. 7. As was expected, in all three cases
the optimizer tries to re-orientate the tow angles to 0◦. The fibers furthest away from the clamped end change the
least since the compliance is very insensitive to these values. What is interesting to note is that while case A and
C converged to a compliance of 8.45 J case B only converged to 10.56 J, a difference of 25%. We can see from
the pattern that while most of the fibers point along the x-axis there is a ’U’ shaped pattern going down the center,
preventing it from achieving the same value as cases A and C. The fact that the solution for case B and C differ so
much despite only differing slightly in initial values seems to suggest that there is a local minimum to the problem
due to the symmetry of the problem.

5.3. Structural Wing Box Optimization
The final problem that was considered was a full wing box modeled from the NASA Common Research Model
(CRM). This wing box structure is created using GeoMACH [3], an open-source parametric modeler for aircraft
geometries and structures. We first create the wing box geometry in GeoMACH, and once we specify the desired
locations of the ribs, spars, and stringers, GeoMACH automatically generates a parametric unstructured quadrilat-
eral mesh of the structure. In this work, we do not change the geometry of the wing.

For this problem the structure was loaded with a uniform suction pressure on the upper surface and an equal
in magnitude positive pressure on the lower surface such that the net resultant force on the wing is upward. The
magnitude of the pressure on both surfaces was 3.6 kPa. The model contains 16,659 elements with just under
100,000 degrees of freedom. The optimization was again a compliance minimization of the entire structure. The
design variables consist of 80 tow angle control points, 40 on both the upper and lower skins of the wing box.
This problem was run from two initial designs: one with the fibers pointing along the span of the wing and the
other with the fibers pointed along the chord. The initial compliance was 28.7 MJ for the spanwise case, and 50.1
MJ for the chordwise case. Both cases converge to the solution seen in Fig8 (b) with a final compliance value
of 25 MJ.This is a 50% and 13% improvement for the chordwise and spanwise cases respectively. The figures
show the upper surface only, however the lower surface shares similar features in fiber distribution. While this
is an impressive improvement for the chordwise distribution, clearly this case would represent one of the poorest
engineering choices in practice. It is more informative to compare the optimum with the spanwise case, since this
represents a more intuitive design choice. We can see that for the optimized wing, most of the fibers still point in
the spanwise direction. The differences exist toward the trailing edge, where the fibers change direction sharply to
point in the chordwise direction. The span-wise fibers on the main part of of the wing act to reduce the bending
stresses, since this is where the load is carried. The reason for the sharp transition at the aft of the wing is that this
juncture is where the ribs end the model, so the optimizer places the fibers in the chord-wise direction to make up
for the loss of rigidity in the aft region.
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(a) Initial (b) Optimized

Figure 8: Initial and optimized tow angle distributions.

6. Conclusion
We presented a method for parameterizing and optimizing tow steered composite structures. We presented two 2D
optimization problems to benchmark the performance of the parameterization, and included a third, more sophisti-
cated, problem in three dimensions to demonstrate its utility. From our study we conclude that the method is indeed
robust, however is limited in the sense that sharp tow angle changes are difficult to achieve. It has also been shown
that certain problems may be subject to local minima due to the parameterization. While the optimization cases
presented in this paper focused on compliance minimization it can be easily extended to more general optimization
problems with multiple laminae layers.
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