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Abstract  
In this contribution, we consider a shape optimization problem of a simple crashworthiness structure. The 
application example is an aluminum frame clamped on one side and impacted on the other side. The structural 
analysis is carried out with the finite element method using explicit time integration. Contact phenomena, buckling 
phenomena und non-linear material data are taken into account. With the aid of this example, a large number of 
different meta-models using radial basis functions, Kriging (Gaussian processes) and neural networks are 
generated.  
The advantages and disadvantages of these different methods and the problems by relying on the common quality 
criterions “coefficient of determination 𝑅𝑅2 ” and “leave-one-out-cross-validation 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 ” are shown. The 
combination and superposition of the different meta-model techniques is investigated in order to enhance the meta-
model prediction capability. 
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1. Introduction 
For a limited number of design variables, the use of meta-model techniques is very popular in structural 
optimization processes. Hereby, we get smooth and continuous descriptions of the structural responses. The quality 
of the meta-models can be scaled individually depending on the available time.  After the creation of the meta-
models, the optimization can be performed without further time-consuming finite element simulations using the 
responses of the meta-models.  
When using meta-models for non-linear dynamic mechanical problems (e.g. crashworthiness problems), the 
nonlinearities and the limited amount of sampling points due to the high computational effort, can cause low 
prediction capabilities of the meta-models. Further difficulties can arise due to non-smooth behavior of the 
structural responses, insufficient material data, physical and numerical bifurcation points and finite element mesh 
dependency.  
In commercial and scientific software codes there exist a large number of different meta-model-techniques. The 
question arises which one is the most suitable for the mechanical problem at hand and which quality criterions can 
be used for this decision.  
In this contribution a large number of different meta-model techniques and some combinations and superpositions 
of the different meta-models is investigated in order to enhance the meta-model prediction capability. 
 
2. Crashworthiness example 
The considered application example shown in figure 1 is an aluminum frame (300 x 150 x 5 mm, wall thickness: 
2 mm) clamped on one side and impacted by a rigid wall under an angle of 10 degree. The rigid wall has a mass 
of 2 kg and an initial velocity of 5 m/s. The design variable describes the y-position of the inner walls (symmetric, 
see figure 1b). Figure 2 shows the deformation and the reaction force of the frame depending on the value of the 
design variable.  
 
3. Meta-model techniques 
In this chapter the relevant meta-modelling techniques are described and applied to the crashworthiness example. 
For this purpose 7 sampling points are used, assuming that more sampling points are not available. The quality 
criterions 𝑅𝑅2 and if possible 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  are calculated. In order to evaluate these quality criterions and the prediction 
capabilities of the meta-models, 6 additional validation points are used. For this purpose the regression parameter 
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2  is calculated for the validation points similarly as 𝑅𝑅2 is calculated for the sampling points. 
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Figure 1: Aluminum frame [1] 
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Figure 2: Deformation and reaction force of the frame depending on the value of the design variable [1] 
 
 

3.1 Radial basis functions 
The value of a radial basis function depends on the distance to a center point 𝐶𝐶(𝑥𝑥𝑛𝑛/𝑦𝑦𝑛𝑛) called radius 𝑟𝑟 = ‖𝑥⃗𝑥 − 𝑐𝑐‖. 
Some common types of radial basis functions are: 

- Linear: 𝜑𝜑(𝑟𝑟) = 𝑟𝑟, 
- Cubic : 𝜑𝜑(𝑟𝑟) = 𝑟𝑟3, 
- Multiquadric: √𝑎𝑎 + 𝑟𝑟2 with the positive shape parameter 𝑎𝑎. 

 
The interpolation is typically done by a linear combination of n (normalized) radial basis functions centered around 
the n sampling points: 

𝑓𝑓(𝑥⃗𝑥) = �𝑤𝑤𝑖𝑖 ∙ 𝜑𝜑(𝑟𝑟)
𝑛𝑛

𝑖𝑖=1

 

 
The weights 𝑤𝑤𝑖𝑖  can be determined by the following equation system: 
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Figure 3 shows three meta-models with different kinds of radial basis functions for the crashworthiness example. 
The real (usually unknown) relation between the design variable and the structural response is indicated by blue 
dots. The training sampling points are pictured by red dots and the validation sampling points by purple dots. 
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Figure 3: Meta-modeling example with radial basis functions [1] 
 
 
3.2 Neural network 
A neural network consists of three different kinds of neurons: the input neurons (process input data), the output 
neurons (process output data) and the hidden neurons (internal representation of the environment/problem). A 
common net type is a feed-forward multi-layer-perceptron net (figure 4). 
 

 
Figure 4: Meta-modeling with neural networks: multi-layer (a),  

neuron input/output (b), common neuron activation functions (c) [1, 2, 3] 
 
The neural networks learn with training data (here: sampling points). The learning process is an optimization of 
the weights between the neurons to minimize the error between the neural network outputs and the given sampling 
points. A common approach for this is the supervised learning with backpropagation, which is a version of the 
method of steepest descent adapted for neural networks. 
Figure 5 shows three different approximations with multi-layer-perceptron networks for the crashworthiness 
example. Each consists of a single input neuron, a single output neuron and two layers of hidden neurons. The 
number of hidden neurons in each hidden layer varies. 
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Figure 5: Meta-modeling example with neural networks [1] 
 

 
3.3 Gaussian Processes (Kriging) 
Gaussian processes are also known as Kriging. The similarity influence (figure 6) of a sampling point on an 
arbitrary point is defined with the covariance function. A common approach is the “squared exponential”: 
 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑥𝑥, 𝑥𝑥′ � = 𝜎𝜎𝑓𝑓2 ∙ 𝑒𝑒(−�𝑥𝑥−𝑥𝑥′�
2

/(2∙𝑙𝑙2)) 
 

 
 

Figure 6: Similarity influence of a sampling point [1] 
 
A covariance matrix between all sampling points with the x-value vector p�⃗ x can be calculated as: 
 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑥𝑥) = �
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… … …
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The covariance matrix between an arbitrary point and the sampling points can be determined as: 
 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑝𝑝𝑥𝑥) = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑥𝑥1) … 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑥𝑥𝑛𝑛)] 
 
The interpolation g�(x) can be defined as: 
 

𝑔𝑔�(𝑥𝑥) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑝𝑝𝑥𝑥) ∙ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑥𝑥)−1 ∙ 𝑝𝑝𝑔𝑔 
 
Three different Kriging interpolations for the crashworthiness example are shown in figure 7. They differ in the 
choice of the parameter theta, which is similar but not identical to the length scale parameter 𝑙𝑙 in (9). Theta = 
8.8315 is optimized for a maximal value of 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 . 
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Figure 7: Meta-modeling example with Gaussian processes [1] 
 
3.4 Typical characteristics of the different approaches 
Typical characteristics of the three described approaches are summarized in table 1. There exist a lot of other meta-
model techniques which are not considered in this contribution, e.g. support vector machine regression, random 
forest or fuzzy regression model. 
  

Table 1: Typical characteristics of the described approaches for meta-modeling 
 

Radial basis functions Neural networks Gaussian Processes (Kriging) 
- Interpolation depends 

on the type of the 
radial basis function 

- Smooth transitions 
between the sampling 
points  

- This smoothness limits 
the versatility 

- “Black-box-systems” 
- Limited versatility due to the activation 

function 
- The higher the number of hidden neurons 

the better the versatility but the higher the 
risk of overlearning 

- The training can be computationally 
expensive 

- The approximation accuracy of the given 
sampling points can be poor 

- High resilience to outlier sampling points 

- Usually it is an interpolation 
- Very versatile and can even adapt 

to non-smoothness 
- The length scale parameter l 

controls the “frequency” 
- The determination of this 

parameter can be difficult, a 
common approach is an 
optimization of this parameter by 
the maximum likelihood principle 

 
4. Superposition of the meta-models 
The quality criterions 𝑅𝑅2 and 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 , the average absolute error at the validation points |𝜀𝜀|𝑎𝑎𝑎𝑎𝑎𝑎  and the regression 
parameter for the validation points 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2  for each meta-model of the crashworthiness example are summarized in 
table 2. 

Table 2: Validation of the meta-models 
 

Meta-model 𝑹𝑹𝟐𝟐 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝟐𝟐  |𝜺𝜺|𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝒗𝒗𝒗𝒗𝒗𝒗𝟐𝟐  
Linear radial basis function 1 0.15501 159.984148 0.35718969 
Cubic radial basis function 1 -1.4867 117.684404 0.68113786 
Multiquadric radial basis function 1 -2.6459 129.308549 0.70727437 
Neural network 10 hidden neurons 1 - 96.9827279 0.87212213 
Neural network 4 hidden neurons 1 - 78.6433099 0.85968893 
Neural network 25 hidden neurons 1 - 93.5231771 0.8740076 
Kriging Theta = 8.8315 1 0.1702 112.8654049 0.7219 
Kriging Theta = 1.1039 1 -5.0133 150.4035117 0.6510925 
Kriging Theta = 35.326 1 -0.31938 196.3350898 -0.73714623 
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Often all available sampling points are used for the training of the meta-model in order to maximize its quality. 
This is especially true for crashworthiness problems, where due to the high computational effort of each crash 
simulation only a very limited number of sampling points is available. In these cases there is no validation data 
and usually 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  is the main descision criterion for the evaluation of a meta-model. 
Astonishingly, for the given crashworthiness example there is no correlation between 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  and the real prediction 
capabilities of the meta-models (evaluated by 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2 ). For example the radial basis function meta-model with the 
highest value of 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  (linear radial basis function) has the lowest value of 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2  of all radial basis function meta-
models.  
The question arises whether there exists a possibility to reduce the risk of choosing a meta-model with a low 
prediction capability by relying on common quality criterions like 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2  and 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 . 
In relation to the computational effort for the generation of the sampling points, the computational effort for the 
creation of meta-models is very low. The idea is to generate a lot of different meta-models and to find a suitable 
superposition of the models in order to enhance the overall prediction capability or at least to reduce the risk of 
choosing a meta-model with a low prediction capability.  
 
Figure 9 shows four different meta-models which are based on the superposition of the meta-models shown in the 
previous chapter. For the superposition the meta-models are weighted equally.  
The superposition of all meta-models has a value |𝜀𝜀|𝑎𝑎𝑎𝑎𝑎𝑎  of 107.29. The average value of |𝜀𝜀|𝑎𝑎𝑎𝑎𝑎𝑎 of all meta-models 
is 126.192258. This difference is quite surprising, because the superposition is just a simple averaging of the meta-
models. Because of the lower average error the 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2  value of the superposition of all meta-models is with 0.73399 
also significantly better than the average 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣2  value of all meta-models with 0.55414. 
This is also true for the |𝜀𝜀|𝑎𝑎𝑎𝑎𝑎𝑎  values of all other superpositions compared to the average |𝜀𝜀|𝑎𝑎𝑎𝑎𝑎𝑎  value of the meta-
models which have been used for the superposition (radial basis functions: 126.1 to 135.66, neural networks: 
89.118 to 89.716 and Kriging: 136.15 to 153.2). Whether this is a mere coincidence or a possible strategy for the 
enhancement of meta-modeling remains the topic of further research. 
 

 
 

Figure 8: Superposition of the meta-models 
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