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1. Abstract
This paper presents a robust technique to design snap-through structures. The structural analysis of the snap-
through structure makes use of an arc length control algorithm. To ensure robustness, the prescribed arc length
per increment is halved whenever complex roots are encountered in the arc length control algorithm, or when the
required number of Newton-Raphson iterations exceeds five.The resulting structural analysis is robust, but now
different analyses makes use of different increment sizes.The resulting optimization problem, which minimizes
the error between a target load-deflection curve and the simulated curve, now contains numerical discontinuities.
We demonstrate how gradient-only optimization algorithmscan robustly optimize such problems.
2. Keywords: Snap-through, arc length control, gradient-only optimization.

3. Introduction
Analysis of snap-through structures usually requires the use of the arc length control method [1]. In this method,
the usual equilibrium equations are augmented with parametrizing the prescribed loads, and then solving this free
parameter by setting the computed arc length increment equal to some prescribed value. Usually this prescribed
arc length is selected as constant for each load increment during the analysis.

Sometimes, the arc length control algorithm fails to find a solution for a specific load increment. This can mani-
fest in two ways. First, the quadratic control equation may indicate a complex root. Secondly, the Newton-Raphson
scheme used to solve the global equilibrium equations may need an excessive number of iterations to solve. Even
in cases where the number of iterations are reasonable (<20), our experience indicates that the algorithm may then
find solutions on other branches of the equilibrium path. Therefore, we halve the prescribed arc length increment
whenever complex roots are encountered, or whenever the number of Newton-Raphson iterations exceeds five.

The automatic adjustment of the prescribed arc length increment presents a difficulty when attempting to design
a snap-through structure to provide a specific load-displacement curve, using classical gradient-based optimization
algorithms. The adjusting of the prescribed arc length has the same consequence as allowing automatic time
increments for transient problems: the cost function of theresulting optimization problem contains discontinuities
since the same problem is analyzed repeatedly, each time using different prescribed arc length values.

We have significant experience in solving optimization problems that uses non-constant discretization algo-
rithms [2]. Here we demonstrate how classical gradient based algorithms struggle to solve this snap-through
design problem, since these algorithms can get stuck at the numerical (non-physical) discontinuities. We also
demonstrate how gradient-only algorithms, a family of algorithms that do not use function values at all, succeed in
designing the snap-through structures.

4. Numerical example
We demonstrate our algorithm using a simple 1D optimizationproblem. The structure of interest is similar to the
well known Lee frame, but here we use a geometrically nonlinear truss code for the analysis. The structure is
depicted in Figure 1. Note that two vertical loads are applied, as well as a single horizontal force. The structure is
analysed for the caseλ = 0.5, i.e. the horizontal force is one quarter of the total vertical load.

We use our robust arc-length control algorithm to first demonstrate that the problem can be solved for a large
range of ideal prescribed arc length incrementsL. For this problem a total arc length of 70 units is prescribed. The
analyses are performed for ideal arc length increments ofL = 0.21875, 0.4375, 0.875, 1.75 and 3.5. If these ideal
arc lengths can be used without modification throughout the analyses, this would translate to 320, 160, 80, 40 and
20 equal increments to analyse the problem. Figure 2 depictsthe horizontal and vertical displacement of point C,
using the two extreme choices forL. UsingL = 0.21875 required 320 increments, while usingL = 3.5 required 26
increments (since some load steps requiredL to be reduced). Figure 3 depicts the equilibrium path of point C in
space. Note that at about 70% of the total arc length, the equilibrium path undergoes a sharp turn. It is this corner
that is difficult to negotiate if we use a large ideal arc length increment.
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Figure 1: Undeformed and deformed truss, depicting 5 equal arc length increments

−8 −6 −4 −2 0 2 4 6 8
−5

0

5

10

15

20

Displacement

F
or

ce

 

 

Horizontal, arc length 0.21875

Vertical, arc length 0.21875

Horizontal, arc length 3.5

Vertical, arc length 3.5

Figure 2: Undeformed and deformed truss, depicting 5 equal arc length increments

0 1 2 3 4 5 6 7 8
−7

−6

−5

−4

−3

−2

−1

0

Horizontal displacement

V
er

tic
al

 d
is

pl
ac

em
en

t

  0%

 20%

 40%

 60%

 70%

 80%

100%

Figure 3: Displacement of Point C for a total arc length of 70 units.
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Now that the analysis has been demonstrated to be robust, we can proceed to investigate an optimisation
problem. We pose a 1D optimisation problem, using the horizontal force componentFx = λP as the single design
variable. We use the horizontal and vertical force-deflection curves as target curves, for the caseλ = 0.5 and
L = 0.21875 (visible as the solid lines in Figure 2). In cases wherewe use a larger value forL, the analysis
requires fewer increments. In order to compute a cost function (sum of square error for 320 increments) for these
cases, we construct an interpolating spline between the total arc length and the quantity of interest (horizontal
displacement, vertical displacement and load). This allows the computation of the cost function for any number of
load steps available. Note however that this step does introduce discontinuities in the cost function as soon as one
analysis requires a different number of increments as another. To demonstrate the nature of these discontinuities,
we compute the cost function for various choices ofL. The cost function is computed forλ ∈ [0.47;0.53]. Since
the target curves were computed forL = 0.21875 andλ = 0.5, we expect the cost function minimum to be at
λ = 0.5.

Figure 4 depicts the cost function curves for various choices ofL. Note that as the ideal arc length is increased,
the optimum of the cost function curve drifts from the correct solution (λ = 0.5), and some discontinuities occur.
This behaviour is identical to the variable time-stepping problem in [2]. Classical gradient based algorithms may
become trapped in the highlighted local minimizers, if a line search process happens to locate these local min-
imizers. These step discontinuities manifest as ridges in higher dimensional optimization problems, and in our
experience are more likely to affect classical gradient based algorithms.
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Figure 4: Cost function as the horizontal force varies

Figure 5 depicts the gradient of the cost function, using analytical derivatives. Although the cost function
suggest discontinuities, any analysis is either to the leftor the right of the discontinuity. For such an analysis, an
analytical sensitivity analysis can be performed. Therefore, we have the gradient of the cost function available
everywhere.

The suggested algorithm to solve this discontinuous optimization problem, is a gradient-only algorithm. For
algorithmic details, refer to [3]. In essence, function values are ignored and we search for a sign change in the
cost function gradient. Notice from Figure 5 that the function gradient also contains small discontinuities, but the
information remains consistent (i.e. there is no sign change in the gradient over the discontinuity).

Note the drift in the optimum for the largest choice ofL = 3.5, from the actual solutionλ = 0.5 toλ = 0.5049.
The quality of the solution can only be judged by comparing the target curves to the solved load-displacement
curves, as done in Figure 6. Notice that all the features of the target curves are captured.

Finally, to further motivate the use of varying arc-length increments, Table 1 summarizes the analyses times for
various choices ofL. There is clear benefit in using large ideal arc-lengths, butthis benefit diminishes gradually.
If the ideal arc-length is chosen too large, almost every increment has to be re-run with a smaller arc-length, and
this reduces the benefit of using large arc-lengths. Nevertheless, for this problem we can expect a speed increase
of a factor 6 when we solve the optimization problem usingL = 3.5 rather thanL = 0.21875.

3



0.47 0.48 0.49 0.5 0.51 0.52 0.53
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Horizontal force

d(
E

rr
or

)/
d(

H
or

iz
on

ta
l f

or
ce

)

 

 

Arc length 3.5

Arc length 1.75

Arc length 0.875

Arc length 0.4375

Figure 5: Cost function derivative as the horizontal force varies
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Figure 6: Optimal solution using ideal arc lengthL = 3.5 versus the target load-displacement curves
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Table 1: Analysis times for different choices ofL

L Time(s)
0.21875 8.83
0.43750 5.17
0.87500 2.76
1.75000 1.68
3.50000 1.46

5. Conclusions
We demonstrated that gradient-only algorithms can be used to solve optimization problems that use variable arc-
length control methods in the analysis step. Although the analysis algorithm introduces numerical discontinuities
into the cost function, gradient-only methods are insensitive to these discontinuities. We are currently working on
higher dimensional problems, including shape design variables.
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