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1. Abstract  
An approach to structural design based on topology and global-local optimization is proposed. It exploits the 
mathematical models of different fidelity. Solid model is used for topology optimization, shell/beam model – for 
structural sizing on global level, refined panel model – for detailed sizing on local model, aerodynamic model – for 
loads and aeroelasticity analysis. Structural design procedure is described. Main features concerning the stated 
global-local optimization problem is discussed. A numerical example of wing optimization of an advanced 
helicopter with low aspect ratio is considered. 
2. Keywords: Aircraft wing, strength, buckling, topology optimization, global-local approach. 
 
3. Introduction 
The aircraft structural design is very complicated problem. It is due to that many operating constraints arising from 
different technical disciplines, determining the performance of the aircraft, should be taken into account. 
Multidisciplinary design optimization approach is often used to solve this problem involving highly large number 
of design variables and constraints. This process is very time-consuming and, in practice, it is necessary to simplify 
the design problem by using mathematical structural models of different levels. In this case, structural optimization 
should be done both on models of global and local levels. Many technical papers [1–4] are devoted to the 
development of the multilevel methods for analysis and optimization. In the paper [4] authors presented a 
global-local approach for structural analysis and optimization with taking into account strength/buckling 
constraints.  
The aim of this work is to combine the structural optimization based on the global-local approach with topology 
optimization to perform a complete design procedure of aircraft structures. Topology optimization of continuum 
structures is to find the optimal designs by determining the best locations and geometries of cavities in the design 
domains. Many numerical methods for topology optimization of continuum structures have been investigated 
extensively, for example [5–9]. Two heuristic methods of structure topology optimization are presented in the 
paper [8]. They are based on the application of the fully-stressed design criterion, used in practice to determine the 
structural rational parameters taking into account the strength constraints. In our context, the topology 
optimization allows to determine the principal load-carrying directions in which structural material should be 
located. These directions are strongly related with the way of load application and number of load cases. Usually 
various engineering interpretations of the topology optimization results can be proposed by designer. In this 
approach several structural layouts are generated, and the global-local structural optimization is performed for 
them.  
The approach is demonstrated on the example of design of low-aspect-ratio wing of advanced helicopter.  
 
4. Structural design procedure 
The general process of structural synthesis includes the topology optimization stage directed on search of 
reasonable structural layouts under action of some extreme loads. Initial data for the topology optimization are 
geometric outlines of a structure. Flow-chart of structural optimization is shown in Figure 1.  
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Figure 1: Flow-chart of structural optimization 
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The topology optimization results are interpreted by design engineers. The second stage is design of structural 
elements in the interpreted layouts. This stage includes shape optimization and determination of structural element 
sizes such as shell thicknesses, section dimensions of beam-type elements with taking into account the operative 
constraints of structure. 
We consider that the geometric outlines of mechanical body are specified. They define the place of load-bearing 
structure (design domain). The structure is supposed to be fixed in some parts and is subjected by external loads of 
several load cases. The design domain is divided in detail on finite elements for analysis of displacements and 
stresses by using finite element (FE) method. The main aspects of applied topology optimization methods are 
discussed in the paper [8]. 
An engineering interpretation of topology results are performed intuitively based on the obtained distribution of 
material in solid finite element model. Therefore, several alternative layouts should be generated to make a choice 
of reasonable structural layout after structural sizing. Structural sizing is fulfilled by means of the global-local 
approach to optimization described below. The auxiliary optimization algorithms in this approach are based on 
optimality criteria and mathematical programming methods. Finally, the best structural layout is found by 
comparison of the obtained structural masses. 
 
4.1. Topology optimization 
The most popular approach for determining the optimal structural layout is to minimize the compliance function or 
the potential strain energy with taking into account a constraint to the given volume (weight) of the structure. 
Mathematically the statement of the structural optimization problem looks as follows 

Find Uf Tmin  subject to 0)( Mdx ≤Ω∫
Ω

ρ        (1) 

Here f is a vector of external load, U is a displacement vector, )(xρ  is a material density in the considered design 
domain, Ω  is a set of elements in the design domain, and 0M  is a value restricting the material mass. The solution 
of the optimization problem is based on the introduction of a design variable x in each finite element, which relates 
Young’s modulus with the density of each finite element of the structure by means of the following expressions: 

xx 0)( ρρ =  and pxExE 0)( = ; where 0ρ  and 0E  are the initial density and Young’s modulus of material, and p is 
a penalty value used in algorithms for selection of the needed and unneeded structural elements [6, 9]. Note that the 
problem statement (1) supposes the only one load case. At the same time, the designed structure of aircraft must 
bear various loads, and the stresses in its elements must be less than the allowable values. To allow for many load 
cases the objective function in (1) is replaced by the weighted sum of compliances for all considered load cases. 
Two heuristic methods of topology optimization which consider stress constraints for many load cases are 
presented in the paper [8]. The developed algorithms based on the use of a simple fully-stressed design criterion. 
They allow obtaining reasonable structural layouts with taking into consideration of many load cases and different 
allowable stresses in the structural elements. The comparison of the resulting structures with the optimal topology, 
obtained by two approaches showed that they are in good agreement. Both these methods can be used in the 
structural design of aircraft wing based on topology and global-local optimization. 
 
4.2. Global-local structural optimization method 
Generally the finite element method is used for static and buckling analysis. These problems are usually solved 
with using different fidelity meshes. The high fidelity grid is not mandatory to perform stress analysis of regular 
aircraft structure but it is significantly required for computation of buckling load and shape of panels. Design 
engineers prepare several mathematical models which include both the full-scale structure under research and its 
separate parts. The global full-scale model includes only global structural parameters. The local model of a 
separate aircraft component should be created with more details to take into account the stress irregularities and to 
determine buckling loads and shapes if compressing forces are available. 
Problems of interaction between the global and local models are discussed in [4]. The main idea is to interpolate 
the internal nodal forces computed on the global model into the nodal forces of the local model. In the optimization 
process on local model applied forces are considered as fixed. The initial elastic parameters of the local FE model 
have to be close to the elastic parameters of the global one. The possible difference between them is due to the 
holes and the stiffening structural elements. The accordance of the elastic material characteristics and the loads on 
the models is performed by their recalculations at the global and local levels of the approach. 
The general optimization problem with using global and local models can be solved by using two-level approach 
described in [2, 3]. In this approach the initial optimization problem is decomposed into separate optimization 
problems of two levels. Consider such two-level approach when system problem is divided into a set of smaller 
subproblems with their own goal functions and constraints. The individual optimization of subsystem is performed 
independently on the first level and coordinate problem is solved on the second (system) level. Generally, the 
nonlinear programming problem is formulated by the following way: 
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Minimize )(Xf  subject to constraints          
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where l
ix  и u

ix  denotes upper and lower limits of xi, which are components of the vector of design variables 
T

nxxx },,,{ 21 K=X . The vector X  is subdivided into two subvectors Y  and Z : { }T, ZYX = . The vector Y  
includes the interaction variables between subsystems and the vector Z has the variables belonging only to 
subsystems. The vector Z  can be partitioned by following way: T

Kk },,,,,{ 21 ZZZZZ KK= , where kZ  are 
the vectors with variables related with only k-th subsystem and K is number of subsystems. 
The vector Y  may appear in all constraint functions while the vectors kZ  appear only in the constraint sets: 
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The goal function can be expressed as ∑
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=
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k
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kf ZY  is the contribution of the k-th 

subsystem to the general goal function. The two-level method can be formulated as follows. 
In the first level problem we tentatively fix the values of the vector Y at values of vector Y*. The problem Eq.(1) is 
reformulated as K independent optimization problems as follows:  
Find the vector kZ  which minimizes function ),()( k

kf ZY  at satisfying the constraints: 
 Kku

kk
l
kk

k
k

k ,,2,1,,0),(,0),( )()()()( K=≤≤=≤ ZZZZYhZYg .  (2) 
In the second level problem the following problem is solved: 
Find new vector Y* which minimizes the function 

∑
=

=
K

k
k

kff
1

*)( ),()( ZYY ,        (3) 

at satisfying the constraints )()( ul YYY ≤≤ . Here *
kZ  are the vectors of variables which are the optimal solution 

of the first level problems. The constraint on bounds of the vector Y is added into the problem to provide a finite 
value of the goal function )( *Yf at solving the second level problem. 
The iterative algorithm can be represented in the following steps: 

1)   Start with an initial coordination vector Y*. 
2)   Solve the K first level problems Eq.(2) and find the optimal vectors Kkk ,,2,1, K=Z . 
3)   Solve the first level problem Eq.(3) and find new vector Y*. 
4)   Check for the convergence of goal function f and the vector Y* by comparison their values with those 

obtained earlier in iteration process. 
5)   If the process has not converged, go to step 2 and repeat the process until convergence. 

Satisfying to buckling constraints at structural optimization is important requirement at aircraft design. Such 
constraints are prescribed to structural panel which generally consists of plate elements modeling a skin of the 
aircraft lifting surface and bar elements modeling stiffening stringers. Different buckling shapes can be 
encountered for the panel under compression/tension and shear loads. Stress constraints in panel and gauge 
constraints on panel design variables are also imposed. The design variables for local level (in the panel) are skin 
thickness, sizes of stringer elements and panel stringer step. 
 
5. Numerical optimization example 
A wing of an advanced helicopter with low aspect ratio is considered as an example for approval of the developed 
method. The research purpose is to find optimal wing structural parameters which provide minimum weight at 
satisfying to strength, buckling and aeroelasticity constraints. Obviously, the minimum of structural weight 
corresponds to some reasonable layout which can be found by topology optimization. 
To determine aerodynamic forces in extreme load cases and to perform aeroelasticity analyses an aerodynamic 
model of the wing has been created. Also the wing outlines serve for generation of a solid finite element model 
which is used in topology optimization (Figure 2, left). It is important to correctly transfer pressure loads from 
aerodynamic to FE model. It was performed by interpolation of the obtained pressures with using polynomial 
function of nodal coordinates in outer surfaces of the FE model. Topology optimization was accomplished to 
minimize compliance at saving 30 percent of initial solid model weight in the final design. The obtained pattern 
where the load-bearing material should be distributed is shown in Figure 2, right. 
In the pattern the lighter regions corresponds to low material densities and the darker regions – to high material 
densities which define the load-carrying regions. It is seen that some wing-box can be considered as structural 
layout together with a set of cross rib elements in the trailing part of the wing. However, it is difficult to choose 
explicitly one layout corresponding to this pattern. That is why it is worth to consider several possible layouts. The 
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following seven ones were proposed based on intuition. They are shown in Figure 3 with hidden upper skin of 
wing.  
 

  
Figure 2: Initial solid FE model (left), topology result (right) 
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Figure 3: Alternative structural layouts 
 
Description of these seven layouts is given in Table 1. 

 
Table 1: Description of structural layouts 

 
1 Single-spar layout in which the spar is in the centre of the maximum material concentration zone. 
2 Two-spar layout in which spars are at the bounds of the maximum material concentration zone. 
3 The same as Layout 2 but the wing-box width is narrowed (front spar is along the maximum structural depths). 
4 Three-spar layout with spars corresponding to Layout 1 and Layout 2. 
5 Three-spar layout with spars corresponding to Layout 1 and Layout 3. 
6 The same as Layout 2 with additional ribs at the end part of the wing. 
7 The same as Layout 4 with additional ribs at the end part of the wing. 
 
In the global optimization level the thicknesses of the panel skins, ribs and spars are considered as design variables 
(DV). Minimum thickness for all DV is 1.2 mm. The allowable stress in design researches chosen from strength 
and fatigue conditions is equal 240 MPa. The number of DV in layouts varies from 71 to 89. This difference is due 
to the number spars and additional ribs in these layouts. 
The structural optimization under strength requirements for these seven layouts leads to the following optimal 
weight values: 35.5 kg, 31.6 kg, 31.7 kg, 32.2 kg, 32.3 kg, 32 kg and 32.5 kg, respectively. Therefore, the optimal 
structural layouts from the viewpoint of strength are two-spar configurations. However, buckling analysis showed 
that all of the considered layouts do not satisfy to buckling requirements.  
Then the structural optimization with stress and buckling requirements were accomplished. The best layout here is 
three-spar wing with additional ribs (weight 42.4 kg). The second layout in weight rank is two-spar wing with 
additional ribs (weight 43.2 kg). They are slightly different in weight so these both are studied in further 
investigations. Comparison of all alternative structural layouts with optimal distribution of material showed that 
the weight benefit was about 10 percent owing to the choice of location of the primary elements.  
Optimum thicknesses for design variables are shown in Figure 4. It is worth to mention that thicknesses in 
wing-box root part significantly change both in spanwise and chordwise directions. 
 

 
Figure 4: Optimum thicknesses after strength/buckling optimization on global level 
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For some wing upper panels the buckling constraints become active. This is due to the fact that upper panels have 
smooth skin (no stringers). Buckling shape for optimal wing is shown in Figure 5. The buckling load factor is 
equal 1. It is obvious that the stiffened panel is more effective to resist buckling. So addition of stringer elements is 
necessary to include. Addition of such elements in global finite element significantly increases both the number of 
degrees of freedom and the number of DV. Some of new design variables related with stringer elements are 
geometric and they define stringer shape. Therefore it is necessary to consider the design problem with using local 
models of panels. In the local optimization problem the design variables are the number of stringers, thicknesses of 
stringer elements, the stringer depth and skin thickness. In this research the shape of stringer section is rectangular, 
and we have four DV for each panel. Only upper wing panels are considered because they are under the action of 
compression loads. Figure 6 shows relation between global FE model and local one for a separate panel. 
 

 

Global FE model of wing

Local FE model of panel

 
Figure 5: Buckling shape Figure 6: Extraction of local model from global model 

 
Iterative global-local optimization was performed. The two-spar wing had the least weight (36.3 kg) while weight 
of three-spar wing was 38.1 kg. Note that panel smeared thicknesses are significantly reduced if compared with the 
results obtained for smooth thickness with optimization on global model. For example, thickness of root upper 
panel was 7.4 mm and after global-local optimization it became 3.14 mm. Optimum stringer parameters of this 
panels are following ones: the number of stringers is 6, its depth is 30 mm and its thickness is 1.86 mm. Note that 
different optimal solutions can be obtained during the optimization process at parametric change of stringer step 
and depth. More technological root panel structure was obtained with the stringer depth of 45 mm. In this case the 
skin thickness is 2.01 mm and stringer thickness is 3.45 mm. The global-local approach to optimization of wing 
with stiffened panels allowed reducing of structural weight by 16.8 percent. 
Aeroelasticity analysis was performed for the chosen two-spar layout with additional ribs at the end part of wing. 
Note that the constraint on the divergence speed was satisfied. The obtained optimum parameters after global-local 
optimization do not provide flutter requirements. The flutter speed after analysis was 112 m/s but it must be greater 
than 145.2 m/s. The sensitivity analysis showed that it was necessary to increase minimum thicknesses of the 
lower panel skin up to 1.3 mm. In addition, the needed thickness of lower panel skin in the root part in the trailing 
edge was 1.5 mm. The damping coefficients versus flight speed are shown in Figure 7.  
 

 
 

Figure 7: Damping coefficients versus flight speed 
 
There three flutter forms with speeds 146 m/s, 147 m/s and 177 m/s. Note that change of panel skin thicknesses for 
taking into account flutter constraints leads to the increase in weight by 0.8 kg. Weight of optimum wing structure 
with satisfying all imposed constrains is 37.1 kg. 
 
5. Conclusions 
The paper has proposed an approach to structural design based on topology and global-local optimization. The 
approach was demonstrated on an example of the low aspect-ratio wing. Application of topology optimization 
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helped to determine several alternative layouts. Comparison of the chosen alternative structural layouts with 
optimal distribution of material showed that the weight benefit was about 10 percent owing to the choice of 
location of the primary elements. By means of structural optimization under strength/buckling requirements two 
reasonable layouts were obtained: the three-spar and the two-spar wing with additional ribs at the end part. It was 
shown that the additional significant reduction of weight could be reached by use of global-local optimization. 
This approach to optimization of wing with stiffened panels allowed additionally reducing of structural weight by 
16.8 percent. It is concluded that the best structural layout from the viewpoint of strength, buckling and 
aeroelasticity is two-spar wing with additional ribs at the end part. 
The developed approach is a very useful tool for the design process of complex aerospace structures. It gives 
reliable results and reduces computational costs compared to a traditional approach to optimization. 
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