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1. Abstract  

In multifrequency atomic force microscopy (AFM) to simultaneously measure topography and material properties of 

specimens, it is highly desirable that the higher order resonance frequencies of the cantilever probe are assigned to be 

integer harmonics of the excitation frequency. In this paper, a structural optimization technique is employed to 

design cantilever probes so that the ratios between one or more higher order resonance frequencies and the 

fundamental natural frequency are ensured to be equal to specified integers. A one-layer probe with variable width is 

optimally designed for assigning single and multiple resonance frequencies. Moreover, a three-layer model is 

proposed to provide more frequency choices. All the designs are verified by experiments, through the focused ion 

beam (FIB) milling based fabrication technique and AFM measurement. 

2. Keywords: Multifrequency atomic force microscopy, Cantilever probe, Eigenfrequency, Structural optimization, 

Focused ion beam  

 

3. Introduction 

Among various atomic force microscopy (AFM) techniques, tapping mode
 
is particularly attractive for imaging soft 

specimens because it does not suffer from lateral friction, hence having minimal damages to a soft specimen as well 

as to probe tip. In the tapping mode, a probe is excited at or near its fundamental resonance frequency, and its tip 

touches the sample surfaces once in every oscillation. A feedback controller is used to keep the vibration amplitude 

at a constant level by adjusting the height of probe base or sample table, to provide the topography of the specimen.  

Conventional tapping mode AFM involves the excitation and detection at a single frequency component of the tip’s 

motion, inevitably losing the information contained in other harmonic components. In recent years, tapping mode 

AFM is emerging to excite or/and detect at multiple frequencies to maximize the potential of AFM for 

characterization, defined as multi-frequency AFM [1]. 

Periodic tapping between the probe tip and the sample surface produces a periodic pulse-like tip-sample interaction 

force, and it was observed that the response of probe due to such a tip-sample force contains rich information about 

material properties of the sample, which can be observed in the higher harmonics of the response [2]. In practice, 

however, there exists a significant difficulty. Because the responses at higher harmonics are typically several orders 

smaller in magnitude than that at the excitation frequency,
 
and also because applying a large tapping force is not 

suitable for high resolution imaging,
 
a reasonable signal-to-noise ratio at the higher harmonics is not readily available 

[3]. 

According to the theory of vibration, if the frequency of a higher harmonic is equal to one of the resonance 

frequencies of the probe, the response of the probe at such a frequency can be greatly enhanced. However, in regards 

to the commonly used rectangular cantilever probe, their high order resonance frequencies do not naturally align with 

any one of the harmonics [1]. Therefore, the probe should be redesigned [4]. Sahin et al.
 
[5] designed a cantilever 

probe with a notch whose third order flexural resonance frequency was equal to the 16
th

 harmonic and the probe is 

called a harmonic cantilever. But this design has a limited capability and a general methodology is not available. Li 

et al. [6] attached a concentrated mass to the probe to tailor the second and the third order eigenfrequencies to be 

integer multiplies of the fundamental eigenfrequency. If large change of the frequencies is required, the mass needs 

to be heavy. As a consequence, this will lower the fundamental resonance frequency of the probe. Xia et al. [7] 

employed the level set based topological optimization method to design harmonic probe. But the result is not 

practical from manufacturing and structure stability issues, and also only one order eigenfrequency assignment is 

achieved.
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For imaging material composition, several harmonics are required to accurately reconstruct the tip-sample interaction 

force, and they should lie in the frequency range with high sensitivity, typically in a low range for soft materials and 

a high range for hard samples. Therefore, a practical methodology is needed to design harmonic probes with pre-

determined eigenfrequencies. Actually, this type of structural optimization problem with eigenfrequency requirement 

has been a subject of extensive interests and investigations in past decade. Maeda and Nishiwaki [8] designed the 

vibrating structures that targets desired eigenfrequencies and eigenmodes shapes. Meske et al. [9] introduced a new 

optimality criteria method to handle eigenfrequency problems. And Du and Olhoff [10] applied SIMP method and 

bound formulation to maximize eigenfrequencies and frequency gaps. Tsai and Cheng [11] utilized SIMP method 

and MAC to obtain desired eigenfrequencies and mode shape.  

Here, this study proposes a design framework for developing a practical novel probe to meet the demands of 

multifrequency AFM. There are two types of design to demonstrate. The first design is one-layer design with 

variable beam width. Another design is three-layer design with symmetric top and bottom layers, whose width are 

the design variables, while the middle layer is kept constant. 

4. Optimization design 

With above defined cantilever design specification, the task now is to devise an optimal design to ensure that the set 

of M orders   *          +  of cantilever resonance frequencies match the required set of M harmonics   
*          + according to  

   
         ,            (1) 

Optimization technique is employed here as a systematic approach. The design variable for one layer design is the 

cross-sectional width along the beam length. However, only the width of symmetric top and bottom layer is chosen 

as the design variable for three-layer design.  

The major optimization goal is to satisfy the resonance harmonics assignment constraints. For nano-scale imaging, 

the effective spring constant K1 of the fundamental mode is also required to be high. Also higher excitation frequency 

brings higher scanning rate. Therefore, the objective is to maximize the fundamental resonance frequency, setting the 

function      
 . Thus the design optimization problem is described as follows with multiple frequency constraints: 

Max      
  

Such that:        
     ,             

(2) 

The weak form of the state equation for eigenvalue problem is given by 

 (   )    (   )      (3) 

where  (   )   
 
              and  (   )   

 
       . Here, the displacement field u defines the mode shape 

of the eigenvalue problem in bilinear form for structure domain  . U denotes all kinematically admissible 

displacement fields and v is the test function. C and   denote the elasticity tensor and material density respectively. 

In the present study, analysis of AFM cantilever probe with variable width and constant thickness distribution is 

modeled by the Bernoulli-Euler beam theory. The slenderness ratio of bending in vertical direction for most 

commercial probes is larger enough to justify the use of Bernoulli-Euler beam theory [12]. During practical tapping 

mode AFM detection process, the optical detection of the probe mainly involves the vertical bending mode. 

Vibration in other directions is neglected. For instance, torsional signal is filtered out at signal analysis step for this 

kind of measurement. 

 

5. Evaluation 

We started the design with a commercial probe stock (AppNano, FORTA). Nominal specifications of the silicon 

probe include: length 225 µm, width 27 µm, thickness 2.7 µm, spring constant 1.6 N/m, and fundamental frequency 

61 kHz. Real dimensions of the probe were also measured, and they were used in the optimization. The material 

properties of silicon is 2330 kg/m
3
 in density and 169 GPa for the Young’s modulus of bending in <110> direction 

since the probe is made from standard (100) silicon wafer. In addition, mass of the probe tip was considered in the 

computation, and it was evaluated from scanning electronic microscopy (SEM) images, which approximately 

accounts for 3% of total mass. The picket-shape end of the probe remained unchanged in the design. 

5.1 One-layer design 

The first case of optimization was to achieve ω2/ω1 = 6, i.e., matching the second resonance frequency to the 6
th
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harmonic. Based on the optimized design shown in Fig. 1(a), the cantilever is fabricated from a commercial 

rectangular probe by modification of its width-profile using focused ion beam (FIB) milling (FEI Quanta 200 3D 

FIB). The ion beam energy and current were 30 kV and 5 nA, respectively. Fig. 1 (b) shows the SEM image of the 

probe obtained. The as-prepared probe was then installed on an AFM (Bruker Bioscope) to measure its resonance 

frequencies. In Fig. 1 (c), the first two resonance peaks f1 (64.24 kHz) and f2 (387.26 kHz) are shown. The ratio 

between f2 and f1 is 6.03, which is fairly close to our design expectation. 

Another case of optimization was to simultaneously achieve two integer frequency ratios ω2/ω1=6 and ω3/ω1=17. 

Fig. 2 (a) shows the design result. After FIB milling, the as-prepared probe, shown in Fig. 2 (b), was measured for its 

resonance frequencies, which are shown in Fig. 2 (c). Here, we only concern with the peaks of flexural vibration. The 

first three resonance frequencies are 61.96 kHz, 369.35 kHz and 1056.3 kHz, respectively. The ratio values of f2/f1 

and f3/f1 are 5.96 and 17.05, respectively. 

It is worthy to note that the fabrication of the final probe was achieved through several rounds of local modifications, 

in consideration of the differences of the cross-section shape between the computational model and the real probe. 

The cross section of the real probe stock is not truly rectangular, but it is treated as rectangular in the computational 

model for convenience.  

 

     
 

Figure.1 (a) Optimally designed result with frequency constraint ω2/ω1=6; (b) SEM image of probe after FIB milling; 

(c) Frequency spectrum of fabricated probe 

  

     
 

Figure.2 (a) Optimally designed result with frequency constraints ω2/ω1=6 and ω3/ω1=17; (b) SEM image of probe 

after FIB milling; (c) Frequency spectrum of fabricated probe 

 

5.2 Three layer design 

Three-layer design provides larger capability for tailoring frequencies. The design domain of three-layer design is 

broader than that of one-layer design, since the width of top and bottom layer can be zero, which is avoided in one-

layer design. The real dimension of probe thickness is 2.8 µm. And we set the thickness of top and bottom layer as 

0.7 µm. Thus the maintained middle layer has a thickness of 1.4 µm.  

The first case of optimization is to achieve ω2/ω1 = 4. Fig. 3 (a) shows the pattern of top and bottom layer. Based on 

this design, we fabricate the probe using FIB milling. The ion beam energy and current were 30 kV and 3 nA, 
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respectively. Fig. 3 (b) and (c) demonstrated the probe from front and back view, respectively. Fabricated probe is 

then installed on AFM to measure its resonance frequencies. In Fig. 3 (d), the frequency peaks are 78.89 kHz and 

320. 79 kHz, which means that the ratio between f2 and f1 is 4.07.  

The second case of optimization is to simultaneously achieve ω2/ω1=6 and ω3/ω1=14. Fig. 4 (a) shows the pattern of 

top and bottom layer. Fig. 4 (b) and (c) present the front and back view of the FIB milled probe, respectively. Fig. 4 

(d) demonstrates the frequency spectrum obtained from AFM measurement. The first three flexural resonance 

frequencies are 77.34 kHz, 455.94 kHz and 1093.6 kHz, respectively. The ratio values of f2/f1 and f3/f1 are 5.90 and 

14.14, respectively.  

Precise depth control of FIB milling is difficult, such that the final milled depth of top and bottom layer are achieved 

by several rounds. Also, the final pattern is obtained after several local modifications. 

 

6. Conclusion 

In summary, a systematic structural optimization method is presented to design harmonic cantilever probes. The 

ratios between one or more higher order resonance frequencies and the fundamental natural frequency are made to be 

equal to specified integers, while the fundamental natural frequency is maximized. The approach is demonstrated 

with one-layer and three-layer designs. Examples of tailoring single and multiple frequencies are presented. The 

harmonic probes designed through the optimization approach were fabricated using the FIB technique. Their 

resonance frequencies were measured, and the results verified the effectiveness of the probes of our design. 
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Figure. 3 (a) Optimally designed top and bottom layer pattern with frequency constraint ω2/ω1=4; (b) SEM image of 

probe’s front side; (c) SEM image of probe’s back side; (d) Frequency spectrum of fabricated probe 
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Figure. 4 (a) Optimally designed top and bottom layer pattern with frequency constraints ω2/ω1=6 and ω3/ω1=14; (b) 

SEM image of probe’s front side; (c) SEM image of probe’s back side; (d) Frequency spectrum of fabricated probe 
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