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1. Abstract  
Robust design aims to find a configuration set in which the structural performance is least sensitive to uncertain 

parameters. The robust design method under loads uncertainty is a nested optimization. In each iteration process, 

the worst-case constraints can be achieved by the anti-optimization, and then the outer loop performs the 

optimization under the constraints. In this paper, a new anti-optimization technique is used to alleviate the 

computational burden with the help of the axial stress forces in members of the truss under each load respectively. 

The axial forces are the main information in the anti-optimization process which can be easily found by finite 

element analysis, and the sign of the forces decide the value of the loads in the corresponding constraints. The 

optimum of the structure is achieved by minimizing the value of the objective function subject to the worst-case 

constraints under uncertainty loads while the robustness is ensured by the anti-optimization process conducting the 

worst-case-scenario. The robust design of a 10-bar and a 25-bar truss under uncertain loads are carried out to 

demonstrate the effectiveness of the present method. 

2. Keywords: robust design; uncertain loads; worst-case; anti-optimization; 

 

3. Introduction 

The optimization of structure is always performed under deterministic loading conditions. However, the loads are 

uncertain in most practical situations, and the designer must take the effects of the uncertainty into consideration. 

The existing popular approaches to describe uncertainties can be classified as probabilistic methods [1,2] and  the 

convex model methods [3,4,5,]. The probabilistic methods require a detailed description of the uncertainties, 

which can hardly be used in practical engineering.  In contrast, the convex model methods, which just require the 

knowledge of the bounds of the uncertain parameters, so it is well suited for cases where lack of information makes 

the implementation of probabilistic approaches very difficult.  

The theory of convex models was investigated in detail by Ben-Haim and Elishako [6]and Elishako et al. [7], and 

it is implemented on the constraints by the use of an anti-optimization process, which finds the worst-case 

produced by the uncertain load condition. The anti-optimization is actually a two-level optimization problem. At 

the outer level, it obtains the best design by optimizing the design variables, while at the inner level it seeks the 

worst condition for a given design from anti-optimization.  

After the anti-optimization method is proposed, many researchers have applied it to the theory and practice. Marco 

Lombardi et al.[8] described a technique for design under uncertainty based on the worst-case-scenario technique 

of anti-optimization, the method can alleviated the computational burden. Marco Lombardi [9] compared two 

different approaches which use anti-optimization, namely a nested optimization and a two steps optimization, 

where anti-optimization is solved once for all constraints before starting the optimization. Stewart McWilliam [10] 

present two new methods for solving constraint equations by anti-optimization method of uncertain structures 

using interval analysis. Zhiping Qiu [11] studied the anti-optimization problem of structures with uncertain design 

variables by combing the conventional optimization and interval analysis. 

In this paper, a new anti-optimization technique is used to alleviate the computational burden with the help of the 

axial stress forces in members of the truss under each load respectively. The axial forces are the main information 

in the anti-optimization process which can be easily found by finite element analysis, and the signs of the forces 

decide the value of the loads in the corresponding constraints. 

4. Problem formulation  

In the deterministic formulation of structural optimization problems, the design variables and parameters are 

assumed deterministic and the objective function as well as the constraints is referred to their nominal values. The 

classical formulation of structural optimization problem can be mathematically expressed as: 

find         X  

minimize    f X  

                                                                     subject to            0  1,  2,  ...,   ig i k X                                           (1) 

Where 1  ( , , )T

nx xX is the n-dimensional vector of design variables,   f X  the objective function,   ig X  the 
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inequality constraint functions, and k is the total number of constraints. For simplicity, the equality constraint 

functions are not described here. 

However, one may observe that the objective function   f X and/or the constraints   ig X  may depend on some 

design parameters subject to uncertainty. In this paper, only loads uncertainty is concerned, and the stress and 

displacement are the constraints, and interval variables are referred to the loads that vary about their nominal 

values and the design variable are controllable design parameters that need to be determined by the designer, such 

as the area of truss elements.  Considering for the sake of simplicity the case where the uncertainty is limited to the 

constraint functions   ig X , so Eq. (1) becomes:  

find            X  

minimize    f X  

subject to      ,   1,  2, ,   
allowallow
ii i i k     X P  

   ,  1,  2, ,   
allowallow
jj ju u u j t  X P  

                                                            L U P P P                                                                   (2) 

in where it is assumed that 
1 2  ,P ,[ ,PP ]nP is the loads uncertainty design parameter vector that only the bounds 

are known, PL and PU denote the lower and upper bound of  P , i.e. 
L U  [ , ] IP P P P .  ,i X P and  ,ju X P are 

the implicit response variables: nodal displacement and element stress. 
allow

i and 
allow

i  are  the allowable stress 

of the thi element, k is the number of element. 
allow

ju and allow

ju are the maximum allowable displacement of the 

thj node, t is the number of node.  

In formulation (2), we require that  ,i X P  and  ,ju X P are satisfied for all the possible values of  P , and the 

structural robust optimization problem can be expressed as an alternative formulation is: 

find              X  

minimize   f X  

                   subject to
       ,  0  1,  2,  ,   max allow

i i i k 


  
IP P

X P

 

                                 
   ,  0  1,  2,  ,   min

allow

i i i k 


   
IP P

X P  

                                  
   ,  0  1,  2,  ,   max

allow

jju u j t


  
IP P

X P
 

                                   
   ,  0  1,  2,  ,min   

allow

j ju u j t


   
IP P

X P  

                                        
 L U P P P                                                                                   (3) 

The maximization of  ,i X P  and  ,ju X P over 
I P  is a process of finding the worst value of  P  for each 

constraint, and this is an anti-optimization process.  

The worst-case set of parameters is searched at each optimization iteration process, and this can be very expensive 

to solve. The novel anti-optimization method proposed in the paper is to alleviate the computational burden which 

is a main difficulty that restricts the application of structural robust design optimization. The process is described 

as follows: 

In the anti-optimization, the stress of each element  ,i P X  and the displacement of each node  ,ju PX are 

obtained under the load  P .  When  , 0i P X , the force P  will be replaced by UP  which is the upper bound 

of P  in the constraint  ,ax  0m
allow

ii P 



IP P

X , and the force P  will be replaced by LP which is the lower 

bound of P  in the constraint  min ,  0 
allow

i i p 


 
IP P

X . Similarly, when  ,P 0ju  X , the force  P   will be 

replaced by UP  which is the upper bound of P  in the constraint  ,  a 0 m x
allow

jju P u


 
IP P

X  the force  P  will be 

instead with LP  which is the lower bound of P  in the constraint  min ,  0 
allow

j ju u P


 
IP P

X .In the converse, 

when  , 0i P X , the force P  will be replaced by LP  in the constraint  ,ax  0m
allow

ii P 



IP P

X , and the 

force P  will be replaced by UP in the constraint  min ,  0 
allow

i i p 


 
IP P

X . Similarly, when  , 0ju P X , the 
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force P  will be replaced by LP in the constraint  ,  a 0 m x
allow

jju P u


 
IP P

X , the force  P  will be replaced by 

UP  in the constraint  min ,  0 
allow

j ju u P


 
IP P

X . By the analysis of the anti-optimization process, the worst-case 

can be achieved easily. And then the robust optimization changed to a deterministic optimization problem. In order 

to improve the efficiency of convergence, the initial values of design parameters are inherited by the result of 

certainty optimization. The flow diagram of the optimization process is showed as Figure 1. 

  

K=1, X=X0

 Deterministic optimization

Min f(X)

S.t. gi(X)≤0

Set the result as the initial 

value of the robust 

optimization

Anti-optimization

Max gi(X,P)≤0

Robust optimization

Min f(X)

S.t. gi(X,P)≤0

N

End

Y

Starting 

point

f Converges?

g ś  are feasible?

K=K+1

 
 

Figure 1: Optimization process 

 

5. Numerical examples 

 

5.1. Example 1: 10-bar aluminium truss 

Consider the well-known 10-bar truss which is made of aluminum as shown in Fig. 2. The characteristics of the 

truss are as follows: the modulus of elasticity E is 68 948MPa(10 000ksi), the weight density ρ is 2768 kg/m3(0.1 

lb/in.3)and the length L of each of the vertical and horizontal bars is 9.144 m (360 in.). The maximum allowable 

stress in each member is the same for tension and compression. The allowable stress σj,allowable is 172.37MPa (25ksi) 

for all bars except bar 9, for which the allowable stress is 517.11MPa (75ksi). The maximum allowable vertical 

displacement δ2,allowable at joint 2 is 0.1270 m (5in.). The cross-sectional area of member j is Aj and the minimum 

gauge constraint of each member Amin is 0.645cm2(0.1in.2). The  joint 4 is subjected to a vertical load P1 while the 

joint 2 is subjected to both a vertical load P2 and a horizontal load P3 as shown in Fig. 2. Their nominal values are 

1P =444.8kN (100 kip), 2P =444.8kN (100 kip), and 3P =1779.2kN (400 kip) respectively.  

1
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                        (1) (2)

(3) (4)

(5) (6)

(7)

(8)

(9)

(10)

18.288 m

9.144 m

 
 

Figure 2: 10-bar truss 

 

Following the equilibrium and compatibility equations, one may easily obtain the axial forces (i 1,2, ,10)iN  in 

the members and the vertical displacement δ2 at joint 2 as follows:  
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N p N                  (4)

  
2 10

2

2
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Where the values of 0

iN are calculated from Eqs. (4)- (13) with a substitution  
1 3 0p p   and 

2 1p  . 

The optimal cross-sectional areas and weight are listed in Table 1 for comparison with its deterministic counterpart. 

They agree well with those of Lombardi [4] and Elishakoff et al. [7], which are also shown in Table 1. Stresses of 

all the elements and displacement of node 2occurring at various load vertices in an optimal structure are shown in 

Table 2, they do not exceed the allowable stresses and/or displacement requirement, and some of them reached the 

allowable values in some load vertices. The anti-optimization technique is just used once in the optimization 

progress, so the method alleviates the computational burden.  

 

Table 1: Optimal cross-sectional areas of the 10-bar truss under different design conditions 

 

Member no. 

Cross-section area(cm2) 
Minimum weight design 

Loads with no uncertainty Loads with 10% uncertainty 
Present Ref.[4] Present Ref.[4] Ref.[7] 

1 26.033 26.019 28.797 28.799 28.799 
2 0.645 0.645 0.645 0.645 0.645 
3 26.033 26.045 44.016 44.019 44.019 
4 78.060 78.064 90.584 90.587 90.589 
5 24.932 24.912 27.782 27.783 27.783 
6 0.645 0.645 0.645 0.645 0.645 
7 72.665 72.716 79.851 79.858 79.855 
8 0.645 0.645 0.645 0.645 0.645 
9 17.791 17.817 29.841 29.841 29.843 
10 0.912 0.912 0.645 0.645 0.645 

Weight(Kg) 725.08 725.34 884.41 884.46 884.47 
 

Table 2: Stresses and displacement of node 2 δ2 occurring at various load vertices in an optimal structure 

 
   Loads vertices Member no. U U U U U L U L U U L L L L U L U L L L U L L L 

1 1.718 1.7237 1.402 1.409 1.713 1.720 1.399 1.405 
2 0.967 1.046 0.712 0.791 0.968 1.047 0.713 0.791 
3 1.124 0.319 1.524 0.720 1.323 0.519 1.7237 0.919 
4 1.627 1.235 1.7237 1.331 1.627 1.235 1.7237 1.331 
5 -1.720 -1.711 -1.412 -1.403 -1.7237 -1.715 -1.415 -1.407 
6 0.967 1.046 0.712 0.791 0.968 1.047 0.713 0.791 
7 1.7237 1.721 1.569 1.566 1.568 1.565 1.413 1.410 
8 -1.163 -1.555 -0.811 -1.203 -0.912 -1.303 -0.560 -0.951 
9 2.289 2.287 1.875 1.873 2.289 2.287 1.875 1.873 
10 -1.368 -1.479 -1.007 -1.118 -1.369 -1.480 -1.008 -1.119 
δ2 0.101 0.127 0.065 0.092 0.091 0.118 0.056 0.082 

 
3.2. Example 2: 25-bar steel truss 

The 25-bar steel truss as shown in Fig. 3 is considered here. The Young’s modulus of the truss E is 199 949.2MPa 

(2.9e104ksi). The length L of each of the vertical and horizontal bars is 15.24 m(600 in.). The joint 12 is 
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hinge-supported while Joints 6, 8 and 10 are roller-supported. Joints 11, 9 and 7 are subjected to vertical loads P1, 

P2 and P3 respectively while Joint 1 is subjected to a horizontal load P4 as shown in Fig. 3. Their nominal values 

are 1 3P P 1779.2KN(400kip)  , 2P 2224KN(500kip) , and 4P 1334.4KN(300kip)  respectively. The 

maximum allowable stress in each member is the same whether in tension or compression. The allowable stress 

σj,allowable is 172.37MPa (25ksi) for all bars. Only the stress constraints are considered in the analysis. The axial 

forces Nj in members can be easily found by finite element analysis. The cross-sectional area of member j is Aj and 

the minimum gauge constraint of each member Amin is 0.645cm2(0.1 in.2). 

P4

P1 P2 P3

1 2 3 4 5
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9
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(11) (12) (13) (14) (15)(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25) 15.24 m

6 x 15.24 m=91.44 m

 
 

Figure 3: 25-bar truss 

 

Similar to Example 1, this problem of minimum volume design is solved using the proposed model with the truss 

under nominal loadsP1, P2 andP3 with 10% uncertainty and load P4 with 20% uncertainty. 

The optimal cross-sectional areas and weight are listed in Table 1 for comparison with those of no uncertainty. 

They agree well with those of Lombardi [4] and Ganzerli, S.et al. [12] also shown in Table 3. Stresses of all the 

elements occurring at various load vertices in an optimal structure are computed also, they do not exceed the 

allowable stresses and/or displacement requirement, and some of them reached the allowable values in some load 

vertices.  

 

Table 3: Optimal cross-sectional areas of the 25-bar truss under different design conditions 

 

Member no. 

Cross-section area(cm2) 
Minimum weight design 

Loads with no uncertainty Loads P1 through P3 with 10% uncertainty and load P4 with 

20% uncertainty 
Present Ref.[4] Present Ref.[4] Ref.[12] 

1 19.677 19.666 27.139 27.374 26.419 

2 0.645 0.645 0.645 0.645 0.645 

3 1.441 1.442 6.223 6.234 5.117 

4 0.645 0.645 1.633 1.574 4.193 

5 74.740 74.615 90.066 89.793 89.514 

6 23.575 23.536 35.879 35.555 35.687 

7 0.645 0.645 0.645 0.645 0.645 

8 0.645 0.645 3.868 3.896 2.740 

9 0.645 0.645 0.823 0.839 2.107 

10 34.860 34.648 38.913 38.640 39.669 

11 52.263 52.146 65.181 65.006 65.337 

12 82.674 82.708 92.387 92.593 91.671 

13 64.923 64.914 71.306 71.310 71.385 

14 66.725 66.778 73.878 73.884 73.760 

15 68.932 68.937 75.702 75.710 75.692 

16 3.9713 3.965 25.670 25.644 25.340 

17 77.749 77.711 93.160 92.897 93.371 

18 72.191 72.237 78.817 79.097 78.347 

19 44.736 44.730 52.087 52.077 51.580 

20 44.719 44.730 52.008 52.035 51.518 
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21 47.061 47.073 51.965 51.989 52.049 

22 45.953 45.946 50.977 50.961 50.772 

23 48.557 48.492 53.574 53.530 53.535 

24 48.421 48.492 53.560 53.611 53.412 

25 48.930 48.999 54.571 54.645 56.101 
Volume(cm3) 1.791 x 106 1.790 x 106 2.111 x 106 2.111 x 106 2.111 x 106 
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