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1. Abstract  

A reduced super beam based finite element model updating technique for beam-type structures is proposed in this 

paper. The model reduction method is adopted to condense the entire beam-type structural model into a reduced 

super beam model with much less degree of freedom. And the eigensolutions and eigensensitivities are 

re-analyzed from the reduced eigenequation of the reduced super beam in the updating process, thus reducing the 

computational load of the traditional model updating methods which perform on the original structure. The modal 

dynamic property difference approach is adopted for updating the reduced super beam model and standard 

optimization techniques are used to find the optimal values of the structural parameters that minimize the 

difference. The effectiveness and efficiency of the proposed method are illustrated through a complicated stiffened 

cylindrical shell structure. 
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3. Introduction 

Great progresses have been achieved in finite element method (FEM) modeling during the past decades. 

However, due to the uncertainties in the geometry, material properties and boundary conditions of the FEM model, 

the dynamic responses of a structure predicted by a highly idealized numerical model usually differ from the 

experimental results. For example, He et al. [1] reported that the differences between the experimental and 

numerical modal frequencies of an aircraft wing exceeded 10% for most modes and even reached 70% in some 

cases. Similarly, more than 60% difference was found between the analytical and measured frequencies of an 

aero-engine casing by Ma et al. [2]. Therefore, an effective model updating method is necessary to obtain a more 

accurate FEM model that are required in a large number of applications, such as optimization design, damage 

identification, structural control and so on[3].  

In the past years, various FEM model updating methods have been developed and practically applied, which can 

be classified into two categories: one-step methods and iterative methods [4]. The former directly reconstruct the 

stiffness and mass matrices of the analytical model, and the symmetry, positive-definiteness and sparseness in the 

updated matrices cannot be preserved. The latter modify the physical parameters of the FEM model repeatedly to 

minimize the modal properties discrepancy between the analytical model and the measurement counterparts, 

which are becoming more popular. Optimization techniques are employed in most iterative model updating 

methods, the eigensolutions and sensitivity matrices of the analytical model must be calculated in each iteration [5]. 

As the analytical model of a practical structure in engineering usually comprises a large number of degrees of 

freedom (DOFs), it is very time-consuming to extract the eigensolutions and eigensensitivities from the large-size 

system matrices, especially for many uncertain parameters that need to be updated. 

To address the computational difficulty, reduced model-based FEM model updating methods have been 

investigated. The substructure based model updating method has been studied [6-8], which is advantageous mainly 

in two aspects. Firstly, it is much easier and quicker to analyze the small system matrices for eigensolutions and 

eigensensitivities, as the original structure is replaced by smaller substructures. Secondly, the separated 

substructures are analyzed independently when applied to model updating. When the updating parameters are 

localized within parts of a structure, only one or more substructures containing the parameters are re-analyzed 

during model updating, and the other substructures are untouched.  However, the construction of the reduced base 

needs a lot of intricate matrices calculation and the accuracy of the substructure based model updating method 

relies on the optimum selection of master modes in the substructures. 

In this work, a reduced super beam based updating method for beam-type structure is presented. The reduced 

super beam method [9-10]，based on the plane cross section assumption and displacement interpolation function 

of beam，is a new model reduction method for beam-type structure. This paper intends to develop the reduced 

super beam method and apply it to calculate the eigensolutions and eigensensitivities for the sensitivity based 

model updating process. The modal dynamic property (frequencies and mode shapes) difference approach is 

adopted for updating the reduced super beam model. In particular, Eigensensitivities with respect to an updating 
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parameter of the global structure is calculated from the derivative matrices of the reduced super beam, which can 

save a large amount of computational effort in the model updating process. A complicated stiffened cylindrical 

shell structure is employed to demonstrate the effectiveness and efficiency of the proposed method. 

 

4. Reduced super beam method 

The reduced super beam method is briefly introduced in this section for model updating purpose. Considering a 

complicated free-free beam-type structure shown schematically in Figure 1(left figure), Oxyz is the global 

coordinate system, in which the Ox axis is along the structural axis and Oy and Oz are in the cross section 

perpendicular to the structural axis.  

As the first step of the new model reduction method, the structure is divided into several parts by a number of 

cross section which is perpendicular to the structural axis. The intersections of the cross sections with the structural 

axis are defined as the master nodes. The original FEM model, which may have hundreds of thousands DOFs, will 

be reduced to a super beam model with the master nodes. Each master node has six degrees of freedom, i.e., three 

translational and three rotational degrees of freedom.  

To construct such a super beam, each structural part is modeled as a super beam element. That is, the nodal 

displacement field in each part is approximated by the generalized displacement of the two master nodes at its end 

through twice transformation (i.e., the first transformation is performed between the structural node and the 

projective node, while the second transformation is performed between the projective node and the master node as 

shown in Figure 1). The detail of the reduction method is as follows.  

 
 

Figure 1: Principle of the model reduction method 

 

In each part i , considering the deformation characteristics of beam-type structure, the well known plane 

cross-section assumption is applied to project the nodal displacements 
j

u  of each structural node j  to the rigid 

body motion vector 
ji

q of its corresponding projective nodes on the Ox axis. The relationship can be expressed as 

 
j j ji
u R q  (1) 

The expand form of Eq. (1) is 
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The six column of 
j

R  is denoted by
1 2 3 4 5 6
, , , , ,

j j j j j j
R R R R R R .The displacement vector 

ji
q  of the projective node 

between the two master nodes of each part i  can be obtained through displacement interpolation function of beam. 

Suppose the displacement of the master nodes is 
1 1 1 1 1 1

( , , , , , )
T

L x y z
u v w   u (left) and 

2 2 2 2 2 2
( , , , , , )

T

R x y z
u v w   u  

(right) respectively, as shown in figure 1(right figure). According to the finite element theory of frame structure, 

displacement transformation between the projective node and the two master nodes can be approximated by the 

interpolation function of beam element as 

  ,
ji L R

T
q N u u  (3) 
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The expand form of interpolation functions N  can be found in paper [10]. By Eq. (1) and (3), the transformation 

relationship matrices between the displacement of each structural node j  and the two master nodes in each part i  

can be written as 

 
j j
R R N  (4) 

The displacement of m  nodes in each part i  are all projected to the two assumed master nodes of the part i . 

Using the transformation (4), the transformation equation of the part i  can be defined as:  

  ,
i i L R

T
U T u u  (5) 

where 
1

( , ..., , ..., )
T

i j m
U u u u  is the nodal displacement vector of the m  FEM nodes in part i , and the 

transformation matrices between the m  FEM nodes and the two master nodes of the part i  is 

1
( , ..., , ..., )

T

i j m
T R R R , with size of 6 12m . Each column in the transformation matrices 

i
T , actually a reduced 

base vector with explicit and localized form, can be obtained with very low computational cost. With this 

transformation(5), the mass and stiffness matrices of the super beam element are defined as 

 ,
T T

s i i s i i
 m T mT k T kT  (6) 

where
s

m and 
s

k has dimension 12 12 .Once the super beam element is constructed by Eq.(6), it could be 

assembled to obtain a free-free reduced super beam model. For a uniform beam type structure, it is only necessary 

to construct the super element once, otherwise, it is needed to construct several super beam elements for 

non-uniform general beam type structure. In this reduction process, the retained DOFs in the reduced model 

preserve its physical characteristics and provide the possibility for further necessary manipulation. The accuracy of 

the reduced super beam model is further improved by modifying the stiffness matrices of super beam element and 

considering the effect of shear deformation in a rational way, and the interested reader can refer to paper [10].  

Suppose the whole beam-type structure with s  nodes ( 6s DOFs) was divided into ( )p p s  parts, in other 

words, there are 1p   master nodes in all. A final reduced super beam model has DOFs ( 6( 1)p  ), which is much 

less than 6s . The mass and stiffness matrices of the reduced super beam are defined as 

 

1 1

       
s s

p p

R R  k M mK   (7) 

5. Model updating using modal property 

Sensitivity-based FEM model updating method is the most frequently used updating method, and the general 

objective function combining the modal properties (frequencies and mode shapes) is usually represented as [6] 

    
2 2

2 2
( )

A AE E

i i i i ji ji

i i j

J r w r w r
 

                (8) 

where 
E

i
 represents the eigenvalue corresponding to the ith experimental frequency, and 

E

ji
 is the ith 

experimental mode shape at the jth experimental point. 
A

i
 and 

A

ji
 denote the corresponding eigenvalue and mode 

shape from the FE model, expressing as the function of the updating parameters r . iw and iw are the weight 

coefficients due to the different measurement accuracy of the frequencies and mode shapes. The objective function 

is minimized by continuously adjusting the parameters r  of the initial FE model through optimization process.  

 

5.1 Sensitivity analysis 

To find the optimal searching direction, sensitivity analysis is usually conducted to compute the rate of the 

change of a particular response quantity with respect to the change in a physical parameter. For the objective 

function, a truncated Taylor series of ( )J r  is defined as  

 
2

1
( ) ( ) [ ( )] ( ) ( ) [ ( )] ( )

2

T T T

Z r J r J r r r J r r         (9) 

where r denotes a step vector from the current r . ( )J r  and 
2

( )J r are the gradient and the Hessian of ( )J r , 

respectively. After an iterative process, the optimized 
*r is reached with ( ) 0J r  . The gradient and Hessian of 

( )J r can be expressed by the sensitivity matrices as  

   2

( ) [ ( )] 2 ( )         ( ) ( ) ( ) 
T T

J r S r f r J r S r S r     (10) 

where ( )f r encloses the weighted residuals ( ( ) )
A E

w r

  and ( ( ) )

A E

w r

  . The sensitivity matrices of the 
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eigenvalues and mode shapes with respect to a parameter r  can be expressed as 

 
( ) ( )

( )            ( )
r r

S r S r
r r

 

  
 

 
 (11) 

The sensitivity matrices ( )S r  may be determined analytically or by using the finite difference method [11].  

 

5.2 Eigensolutions with reduced super beam method 

The eigensolutions and eigensensitivity matrices can be calculated based on the classical eigenequation  

 
i i i
  K M  (12) 

where K and M are the stiffness and mass matrices, 
i

 and 
i

 are the ith eigenvalue and eigenvector, respectively. 

In traditional model updating methods, the eigensolutions and eigensensitivities analysis based on the large-size 

system matrices is expensive, updating the FEM model of a large-scale structure usually involves a heavy 

workload and many runs are usually required to achieve the convergence of the optimization.  

In the present paper, a beam-type structure is condensed to a reduced super beam based on the aforementioned 

reduced method, aiming at reducing the sizes of the stiffness and mass matrices and eliminating the expensive 

reanalyses of eigenproblems due to the variations of the updating parameters. The reduced solutions are then 

transformed to obtain eigensolutions and eigensensitivity of the global structure by using transformation matrix, 

which is an assemblage of 
i

T .  

We also suppose that the stiffness and mass matrices depend linearly on the model parameter r , which is often 

encountered in practical applications of model updating. Specifically, it is assumed that the mass and stiffness 

matrices of the original model take the form as 

 
0 0

( )    ( )    
N N

i i i i

i i

r r

r r    K r K K M r M M  (13) 

where
0

K ,
0

M ,
i

K  and 
i

M  are constant matrices, independent of r , and 
r

N is the number of structural model 

parameters to be updated. Then the construction of the super beam element is guided by the linear dependence so 

that the stiffness and mass matrix for each beam element depend linearly on only one of the parameters to be 

updated. The mass and stiffness matrices at the reduced level admit a similar representation as (14), 

 
0 0

( )    ( )    
N N

R Ri i R Ri i

i i

r r

R R
r r    K r K K M r M M  (14) 

In order to save computational time, the constant matrices are computed and assembled once and, therefore, there 

is no need for this computation to be repeated during the iterations in optimization for model updating. 

 

6. Numerical example: a stiffened cylindrical shell structure 

To illustrate the feasibility and computational efficiency of the proposed method, a uniform typical stiffened 

cylindrical shell structure in free-free boundary condition is employed here as shown in figure 2.  Figure 3 gives its 

FEM model with 4530elements, 3060 nodes and 18360 DOFs in total. The material of the structure is isotropic 

with Young's modulus
4

7.0 10E MPa   , Poisson's ratio 0.3   , and mass density 
3 3

2.7 10 /g mm


  .  

 
 

Figure 2: Typical stiffened cylindrical shell structure         Figure 3: FEM model of the cylinder structure 

 

The original full FEM model was reduce to a super beam model of 50 uniform super beam elements in this paper, 

and the reduced super beam model has 306 DOFs in total, which is much less than the original model. The first six 

overall natural frequencies and corresponding mode shapes are calculated using the reduced super beam model, 

and compared with the original model in Table 1. Some minor differences are found in Table 1, and the relative 

differences in frequencies are less than 3% for almost all modes. Modal assurance criterion (MAC) [9] values of all 
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mode shapes are above 0.88, which indicate the similarity between the reduced and original mode shapes. 

 

Table 1: The frequencies and mode shapes of the cylinder structure using the proposed method 

 

Frequency order Original model (hz) Reduced model(hz) Difference (%) MAC 

1st bending 89.53 84.32 

133.72 

183.16 

227.45 

267.59 

291.90 

5.82 0.88 

1st torsional 130.46 2.50 0.95 

2nd bending 186.59 1.84 0.90 

1st axial 220.86 2.98 0.91 

2nd torsional 261.07 2.50 0.94 

3rd bending 284.84 2.48 0.89 

 

In model updating, the simulated ‘experimental’ modal data are usually obtained by intentionally introducing 

damages on some elements, and then the analytical model is updated to identify these damages. In this present 

paper, the simulated frequencies and mode shapes, which are treated as the ‘experimental’ data, are calculated 

from the FE model by intentionally reducing the bending rigidity, torsional rigidity and axial rigidity in some parts. 

The simulated reduction is listed in Table 2 and denoted in figure 3. 

 

Table 2: Assumed rigidity reduction in some parts 

 

 Case1   Case2   

Assumed  

discrepancy 

Part2/Part3   (-30%) 

Part6            (-20%) 

Part8            (-30%) 

Part1               (-30%) 

  Part4/Part5     (-20%) 

  Part9               (-30%) 

 

The eigensolutions and eigensensitivities of the analytical model are calculated using the proposed reduction 

method, and match the ‘experimental’ counterparts through an optimization process. The rigidity of all reduced 

super beam elements is assumed as unknown and chosen as the updating parameter. Accordingly, there are 50 

updating parameters in total. The weight coefficients are set to 1.0 for the frequencies and 0.1 for the mode shapes. 

The Lanczos method is employed to calculate the eigensolutions and the analytical method is used for the 

eigensensitivities. To calculate the eigensensitivity of the global structure with respect to an updating parameter, 

the derivative matrices of only one super beam element that contains the parameter is required while those in other 

substructures are set to zero. The optimization is processed by using Method of Moving Asymptotes (MMA) [12], 

which stops until the objective change between two successive iterations is less than a specified tolerance 0.05%.  

In the case1, the rigidity of randomly selected parts is assumed to be reduced by 30% and 20%, that is, the rigidity 

of part2, part3 and part8 are reduced by 30% and part6 is reduced by 20%, while the other parts remain unchanged. 

Then the damaged structure is used to obtain the ‘experimental’ frequencies and mode shapes. The model updating 

process is conducted to make the analytical model reproduce the ‘experimental’ frequencies and mode shapes. The 

frequencies and mode shapes before and after the updating are compared in Table 3. It demonstrates that the 

analytical modal datas closely match the simulated ‘experimental’ counterparts after the updating. 

 

Table 3: The frequencies and mode shapes of the cylinder structure before and after updating (case1) 

 

Frequency 

order 

Experimental 

frequencies 

(hz) 

Before updating After updating 

Analytical 

frequencies(hz) 

Difference 

(%) 
MAC 

Analytical 

frequencies(hz) 

Difference 

(%) 
MAC 

1st bending 80.82 84.32 

133.72 

183.16 

227.45 

267.59 

291.90 

4.33 0.85 77.81 3.72 0.89 

1st torsional 124.56 7.35 0.79 119.87 3.76 0.88 

2nd bending 167.70 9.22 0.82 170.88 1.89 0.92 

1st axial 211.77 7.41 0.83 203.39 3.95 0.90 

2nd torsional 241.07 11.01 0.73 233.71 3.05 0.87 

3rd bending 264.46 10.38 0.75 275.46 4.15 0.85 

 

Without losing generality, the rigidity of different parts is assumed to have some known discrepancy as well. In 

case2, the rigidity of part1, part9 are reduced by 30% and part4, part5 are reduced by 20% (see Table 2). The 

frequencies and mode shapes before and after the updating are compared in Table 4. In Table 4, the frequencies 

and mode shapes of the updated model better match the ‘experimental’ counterparts. 
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It should be noted that using the proposed reduced super beam method, the eigensolutions and eigensensitivities 

are calculated based on the reduced equation with size of 306 306 , rather than on the original global 

eigenequation with size of18360 18360 . The eigensolutions based on the reduced super beam model takes only 

0.25 second, while it takes about 5000 seconds based on the original model.  As comparison, the proposed reduced 

super beam-based model updating method achieves higher efficiency. 

 

Table 4: The frequencies and mode shapes of the cylinder structure before and after updating (case2) 

 

Frequency 

order 

Experimental 

frequencies 

(hz) 

Before updating After updating 

Analytical 

frequencies(hz) 

Difference 

(%) 
MAC 

Analytical 

frequencies(hz) 

Difference 

(%) 
MAC 

1st bending 82.13 84.32 

133.72 

183.16 

227.45 

267.59 

291.90 

2.67 0.80 80.07 2.51 0.90 

1st torsional 127.01 5.28 0.78 121.99 3.95 0.89 

2nd bending 173.74 5.42 0.85 176.99 1.87 0.93 

1st axial 215.93 5.34 0.82 207.06 4.11 0.89 

2nd torsional 254.11 5.31 0.83 245.07 3.56 0.91 

3rd bending 263.05 10.97 0.73 274.75 4.45 0.87 

 

7. Conclusions 

This paper has proposed a reduced super beam based model updating method for beam-type structure. The 

eigensolutions and eigensensitivities of the original structure are calculated from a greatly reduced super beam 

model, and calculation of the eigensensitivities with respect to an updating parameter only requires analysis of the 

super beam element that contains the parameter. The proposed model updating method is advantageous in 

improving the computational efficiency. The Application to a typical stiffened cylindrical shell structure 

demonstrates that the proposed model updating method is efficient to be applied to update large-scale structures 

with a large number of design parameters.  

It is only an introduction of the proposed method in this paper. Although the examples given are simple, which 

have shown the effectiveness and efficiency. Great efforts will be made to apply the method to more complex 

practical problems in further research. 
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