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Abstract  
In many aerospace engineering design problems, objective function evaluations can be extremely computationally 
expensive, such as the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational 
fluid dynamics (CFD) simulation. A widely used approach for dealing with expensive optimization is to use cheap 
global surrogate (approximation) models to substitute expensive simulation. The effective global optimization 
(EGO) based on Kriging model is a widely used approach for dealing with the expensive optimization problems. In 
the standard EGO and most Kriging based aerodynamic optimization application, one sampling point is 
determined for expensive simulation. To make best use of parallel computing resources, multi-point infill 
sampling criteria is need to improve the efficiency of aerodynamic shape optimization. In this paper, a recently 
developed multiobjective optimization based framework balance the global exploration and local exploitation in 
EGO, called EGO-MO, is introduced. It can generate multiple test solutions simultaneously to take the advantage 
of parallel computing. The EGO-MO is applied for the aerodynamic shape design of a transonic airfoil to minimize 
drag maintaining the reference lift. The class/shape transformation (CST) method is employed for the 
parameterization of airfoil. The open source code SU2 is adopted to perform the high-fidelity aerodynamic analysis 
of initial and infill sampling points. The comparison of EGO-MO and standard EGO for the transonic airfoil 
problem is presented. The investigation shows that the EGO-MO feature less iteration numbers and can give better 
optimal results.  
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Introduction 
In the optimization design of aerodynamic shape of a flight vehicle [1, 2] or airfoil [3, 4], the objective function 
evaluation is done via high-fidelity and expensive computational fluid dynamics (CFD) simulation. In spite of 
great development of computing technology, such as the more accurate and faster simulation code and parallel 
computing, the efficient optimization method is still an open research area. Modern heuristics are not suitable since 
these methods often require an unbearable number of function evaluations. 
Due to the importance of expensive optimization, much effort has been made for developing methods to produce a 
reasonably good solution within a given budget on computational cost or time [5, 6]. A widely used approach for 
dealing with expensive optimization utilizing high-fidelity analysis is to use cheap global surrogate 
(approximation) models to substitute expensive simulation. Kriging is have been widely applied to many 
expensive optimization problems [7-10], since it can approximate nonlinear and multi-modal functions, and produce 
unbiased prediction at untested points. Actually, Kriging has been. Efficient Global Optimization (EGO) is the 
most popular Kriging based expensive optimization method [5].  
The infill sample selection criterion is an important issue for Kriging based optimization, such as EGO. In the 
original EGO or several aerodynamic optimization problems, one test points for evaluation is determined at each 
iteration. To make good use of parallel computing resources, a multiobjective optimization based framework has 
been proposed to balance the exploration and exploitation for expensive optimization problem, called EGO-MO 
[11]. It treats balancing the local exploitation and global exploration as a multiobjective optimization problem 
(MOP). Then, a multiobjective optimization algorithm can be used for obtaining the Pareto set, i.e., a set of best 
trade-off solutions for balancing exploitation and exploration. Several points can be selected from the Pareto set 
for evaluation in a parallel manner. In such a way, parallel computing techniques can be used for reducing the 
clock time for optimization. Additionally, the Multiobjective Evolutionary Algorithm based on Decomposition 
(MOEA/D) [12] is employed to solve the aforementioned MOP. Due to the population nature of MOEA/D, it is able 
to escape from local optimal solutions and give a set of high quality trade-off candidates for local exploitation and 
global exploration.  
In this paper, the EGO-MO is applied to the aerodynamic shape optimization problem, more exactly the airfoil 
shape optimization. The remainder of this paper is organized as follows. Section 2 introduces the Kriging and the 
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EI criterion. Section 3 presents the basic idea and framework of EGO-MO. Section 4 presents the airfoil shape 
optimization result. The comparison between of original EGO and EGO-MO for airfoil shape optimization 
problem is also presented in this section. Finally, Section 5 concludes the paper.  
 
1.   Kriging and Expected Improvement 
 
1.1 Gaussian Stochastic Process Modeling 
Let 
 ( ), ny g x x R= ∈  (1) 
be the objective to minimize. We assume that the function value evaluation of g(x) is expensive. To construct a 
Gaussian stochastic process (Kriging) model for g(x), K sample points 1,..., K nx x R∈  and their function values 
(responses) 1,..., Ky y  are required. Suppose 
 ( )y xµ ε= +  (2) 

where µ  is a constant and ( )xε  is a Gaussian stochastic process with following properties: 

 ( ) ( ) ( ) ( ) ( )2 20, Var , Cov , ,i j i j
ijE x x x x c x xε ε σ ε ε σ⎡ ⎤ ⎡ ⎤= = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3) 

where the correlation function ( ),i jc x x  is assumed to depend only on ix  and jx . 
There are some different forms of correlation function such as the Gaussian function, exponential function, 
spherical function and spline function. The Gaussian function is used in this paper, which has the following form 
 ( ) ( ), exp ,i j i jc x x d x x⎡ ⎤= −⎣ ⎦  (4) 

where 
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1
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0iθ > , and 1 2ip≤ ≤ . 

The unknown hyperparameters in the above Gaussian stochastic process modeling are µ , σ , ( )1,...,i i nθ = , and 

( )1,...,ip i n= . Given K points 1,..., K nx x R∈ and their responses 1,..., Ky y , these hyperparameters can be 

estimated by maximizing the likelihood that g(x)=yi at sampled points ( )1,...ix x i K= = . The details can be found 
in [5]. 
If the hyperparameter estimations µ̂ , 2σ̂ , îθ , and ( )ˆ 1,...,ip i n=  are given, one can predict g(x) at any untested 
point x based on the response values yi at xi for i = 1 , … , K.  
The best linear unbiased predictor of g(x) is as follows 
 ( ) ( )1ˆ ˆ ˆTy x r C yµ µ−= + −1  (6) 
and its mean squared error is  
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where ( ) ( )1, ,..., ,
TKr c x x c x x⎡ ⎤= ⎣ ⎦ . ( ) ( )( )2ˆ ,N y x s x  can be regarded as a predictive distribution for ( )g x  given 

the response value iy  at ix  for 1,...,i K= .  
 
1.2 Expected Improvement 
After building a predictive distribution model for the objective function, we then define a metric for measuring the 
merit of evaluating a new untested point for minimizing g(x).The expected improvement [5] is introduced in the 
following.  
Let ( ) ( )( )2ˆ ,N y x s x  is a predictive distribution model for g(x), and the minimal value of g(x) over all the 
evaluated points is gmin, then the improvement of g(x) at a untested point x is  
 ( ) ( ){ }minmax ,0I x g g x= −  (8) 
Thus, the expected improvement (EI) can be calculated as  
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 (9) 

The above formula has two terms. The first term prefers points whose prediction values are small and have low 
uncertainty. It reflects the local exploitation. The second term is the product of the error s multiplying the 
probability density function. It reflects the global exploration. Therefore, the EI can be considered as a balance 
between exploiting promising areas of the design space and exploring uncertain areas [13].  
 
2. Algorithm Framework for EGO-MO 
 
2.1 The Basic Idea 
The basic idea of EGO-MO is to use a multiobjective optimization algorithm for finding a set of test points, which 
can balance exploitation and exploration in different ways. We set the first and second items of the EI as two 
objective functions. More specially, the MOP is: 

 ( ) ( ) ( )( )1 2max ,
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=
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.  

It should be pointed out that any other two metrics reflect global exploration and local exploitation can also be used 
as two objectives in our approach. The Pareto optimal solutions of the above problem should be good candidate 
points for evaluation. Due to its simplicity and efficient, the MOEA/D [12] is used to solve the above MOP.  
Let the objective to minimize is g(x), our proposed EGO-MO works as follows. 

 
Algorithm Parameters: 
KI: the number of initial points in Initialization; 
KE: the number of function evaluations at each generation. 
Step 1 Initialization: Generate KI points 1,..., IKx x  from the search space by using an experiment 

design method and evaluate the function values of these KI point. Set { }1
eval ,..., IKP x x= . 

Step 2 Stopping Condition: If a predetermined stopping condition is met, output the minimum 
function value in evalP  as an approximation to the optimum and stop. 

Step 3 Model Building: By using the function values of the points in evalP , build a predictive 
distribution model for objective function g(x). 

Step 4 Locating Candidate Points: Using MOEA/D, solve Problem (10) and obtain the Pareto optimal 
solutions 1,..., Nx x .  

Step 5 Selecting Points for Function Evaluation: Select KE points from 1,..., Nx x  using a selection 
scheme.  

Step 6 Function Evaluation: Evaluate the function values of all the KE selected points in Step 5, then 
add all these points to evalP  and go to Step 2.  

 
In Step 2, the stopping condition is: 
 ( ) ( )1 max min,...,

max /N rx x x
E I x Y Y ε

∈
− ≤⎡ ⎤⎣ ⎦  (11) 

where maxY  and minY  are the maximum and minimum of evaluated function values, ( )1 ,...,
max Nx x x

E I x
∈

⎡ ⎤⎣ ⎦  is the 

maximum of expected improvement of the Pareto optimal points 1,..., Nx x , rε  is a predefined convergence 
threshold.  
 
2.2 MOEA/D for Locating Candidate Points 
To solve Problem (10), MOEA/D first decomposes it into N single objective optimization subproblems. The 
objective in each subproblem is a weighted linear or nonlinear aggregation function of . 1f . and 2f . Thus, each 

subproblem is associated with a weight and its optimal solution is a Pareto optimal solution to Problem (10). If the 
decomposition is done properly, then the optimal solutions to these subproblems will provide a good 
approximation to the Pareto front of (10). MOEA/D makes use of the neighbourhood relationship among these 
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subproblems and optimizes all the subproblems simultaneously. 
 
2.3 Selecting Points for Function Evaluation 
In order to select KE points from N candidate solutions obtained by MOEA/D, we have the following 
considerations.  
1) The point to be evaluated should be different from the points already evaluated.  
2) The selected points should be evenly distributed on the PF. Therefore, if two solutions ix  and jx  whose weight 
vectors are close, they cannot both be selected.  
3) The selected points should be uniformly filling the design space with the evaluated points. The points 
maximizing the minimum distance to the evaluated points are preferred.  
 
3. Airfoil Shape Optimization  
 
3.1 Optimization Problem 
In the airfoil shape optimization problem, the drag is minimized while the lift is maintain the same level of the base 
airfoil (RAE2822[14]). 

 
Base

minimize
subject to

d

l l

C
C C≥

  (1.12) 

The flight condition used for design optimization is set as follows: (1) The Mach number is 0.729; (2) The angle of 
attack of 2.31 degree; (3) The freestream temperature is 288.15K; (4) The Reynolds number is 6.5 million.  
 
3.2 Design variable 
The airfoil shape is deformed using the class/shape transformation (CST) method [15]. In the CST method, the 
airfoil shape is represented by the combination of the class function and the shape function, as follows 
 ( ) ( ) ( )2

1

N
N teC Sξ ψ ψ ψ ψ ξ= + Δ   (1.13) 

where z
c

ξ = , x
c

ψ = , ( ) ( ) 22 1

1
1 NN N

NC ψ ψ ψ= −  is the class function, and ( )
0

N
i

i
i

S Aψ ψ
=

⎡ ⎤= ⎣ ⎦∑  is the shape function, 

teξΔ  is the trailing-edge thickness ratio. For general airfoils, the class parameters 1N  and 2N  are set to 0.5 and 
1.0, respectively. The Bernstein polynomial is employed as the shape function to describe the detailed shape. The 
airfoil shape can be represented using the Bernstein polynomial with different weight coefficients. These weight 
coefficients are then employed as design variables in optimization.  
Fourteen weights are used in this paper, i.e., seven weights are placed on each lower and upper surface. The 
weights are allowed to vary in range of not distorting or disturbing the grid deformation as described in Table 1. 
The slopes of airfoil described by the upper and lower bounds of variables are presented in Figure 1.  
 

Table 1: The bound of design variable 
 

No. 1 2 3 4 5 6 7 
Lower 
surface 

Upper -0.10 -0.10 -0.10 -0.15 -0.01 -0.10 0.10 
Lower -0.16 -0.16 -0.17 -0.30 -0.05 -0.20 -0.02 

Upper 
surface 

Upper 0.16 0.16 0.20 0.20 0.30 0.20 0.30 
Lower 0.10 0.10 0.10 0.15 0.16 0.12 0.18 
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Figure 1: The bounds of the airfoil shape  
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3.3 Aerodynamic analysis 
Although the expensive simulation is replaced with the Kriging model, the numerical experiments on sampling 
data are still required. The design condition is considered to be compressible flow. In the airfoil shape optimization 
problem, the Stanford University Unstructured (SU2) software suite [16] is employed as the high-fidelity 
computational fluid dynamics (CFD) simulation tools. The governing equation of viscous compressible flow is 
adopted for aerodynamic analysis. Spatial numerical flux is discretized using JST scheme. Viscous flux is 
discretized using the 1st upwind differencing method with SA turbulence modeling. The mesh used is an 
unstructured, O-grid that wraps around the RAE 2822 airfoil. It has 22,842 elements in total with 192 edges 
making up the airfoil boundary and 40 edges along the far-field boundary. The first grid point of the airfoil surface 
is at a distance of 1E-5 chords, and the far-field boundary is located approximately one hundred chord lengths 
away from the airfoil. The grid deformation module in SU2 is used to deform the grid system, which employs the 
linear elasticity equations. The computational capacity of SU2 for the viscous analysis of RAE2822 has been 
demonstrated in[14]. It is appropriate for being used in design procedure.  
 
3.4 Settings for optimization 
The first Kriging model is built on 105 initial sampling test points, which are generated using the optimized Latin 
hypercube sampling method [17]. The parameter for stopping condition is set as 61 10rε

−= × . The multiobjective 
evolutionary algorithm based on decomposition (MOEA/D) is employed to solve the multiobjective problem that 
balance exploitation and exploration and locate the candidate points. The number of function evaluation at each 
generation is 3. Parameters used in MOEA/D are set as follows: a) the number of subproblems N is 300; b) the 
number of generation is 300; c) the number of neighborhood is 20; d) Aggregation method: Tchebycheff approach. 
 
3.5 Design Result 
The initial Kriging model is built by using 105 initial points, the optimization stopped by 11 iterations for 
EGO-MO, and 23 iterations for standard EGO. Although the iteration number of EGO-MO is less than the 
standard EGO, its function evaluation number, 33, is larger than standard EGO. 
The optimum geometry found by EGO-MO and standard EGO is depicted in Figure 2. The wall pressure 
distribution and pressure field contour is illustrated in Figure 3 and 4. As can be seen in Figure 3 and 4, airfoil 
obtained by standard EGO is optimized such that shape from the stagnation point to the maximum thickness point 
is changed gradually on the upper surface; and the maximum thickness point is moved toward the trailing edge. 
However, the EGO-MO found a more slender shape than the base.  
 
The aerodynamic performance of optimum airfoil is presented in Table 2.  
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Figure 2: Optimum airfoil shape Figure 3: Wall pressure distribution 

 
Table 2: The aerodynamic performance of optimum airfoil 

 
 Lift Coefficient Drag Coefficient L/D 
Base 0.72377 0.013453 53.8 

EGO-MO Optimum 0.784424 0.0114207 68.6843 
Improvement +8.38% -15.11% +27.67% 

Standard 
EGO 

Optimum 0.735569 0.0118942 61.8425 
Improvement +1.63% -11.59% +14.95% 
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Figure 4: Pressure field comparison (left: baseline, middle: optimum of EGO-MO, right: optimum of 
standard EGO) 

 
4. Conclusions 
In the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational fluid dynamics 
(CFD) simulation, objective function evaluations can be extremely computationally expensive. In this paper, a 
recently developed multi-point infill sampling criteria for EGO, called EGO-MO, is applied for the optimization of 
the transonic airfoil shape. In the EGO-MO, the multiobjective optimization based framework is employed for 
multi-point infill sampling criteria to enhance the efficiency of the standard EGO. The Kriging and EI infill 
sampling criteria is introduced firstly. Afterwards, the basic idea and the algorithm framework of EGO-MO are 
briefly presented. In the airfoil shape optimization problem, the objective is to minimize drag maintaining the 
reference lift for the transonic airfoil rae2822. The class/shape transformation (CST) function is employed for the 
parameterization of the airfoil. The open source code SU2 is adopted to perform the high-fidelity aerodynamic 
analysis of initial and infill sampling points. The EGO-MO and standard EGO is applied to solve the 
aforementioned airfoil optimization problem. The two methods are compared for the function evaluation number 
and the iteration number. The optimum results are also analyzed for the mechanism of the drag reduction.  
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