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1. Abstract
In this article, generative design algorithms are investigated as a strategy for solving two-dimensional steady-state
heat conduction topology optimization problems. The motivation for this study is to investigate alternative nu-
merical strategies for the eventual solution of richer three-dimensional multidisciplinary electro-thermal design
problems related to functional electrical power systems. The efficient solution of such problems is critical for
future power-dense electronics, where the optimal layout of heat sources (e.g., electrical devices) and heat sinks in
combination with heat flow control structures and devices is important. Thus, as a first step toward this greater goal,
generative algorithms are explored for their possible benefits, which include enabling a broader variety of objective
functions, design constraints, and design variables plus separation of the design description from the computational
mesh. Specifically, a new design method based the Space Colonization Algorithm is investigated. The generative
algorithm is implemented using two distinct techniques. The first method is to use the generative algorithm to pro-
duce a starting topology for the SIMP Method; this will be referred to here as the Hybrid Approach. The second
technique is to use the generative algorithm to produce topologies that can be meshed directly and evaluated with
a finite element solver; this will be referred to here as the Generative Design Approach. A two-dimensional case
study is used to compare the effectiveness of the SIMP, Hybrid, and Generative Design approaches. These initial
studies involve a homogeneously heated square design domain where the thermal compliance design objective and
computational cost are assessed.
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3. Introduction
Topology optimization was first explored in structural design. Given a design domain, topology optimization al-
gorithms determine the distribution of material within the domain to achieve the best structural performance. Nu-
merous approaches have been developed to assign material distribution, from density to evolutionary approaches.
A recent review describes existing topology optimization approaches in more detail [1]. Beyond structural design,
topology optimization algorithms have been tailored to solve heat transfer problems, including two-dimensional
heat conduction problems [2, 3, 4] and multiphysics thermo-fluid problems [5, 6]. Extensions to three-dimensional
heat conduction problems [7] and transient heat transfer problems [8, 9] have been made.

Generative algorithms involve the iterative application of simple recursive rules to produce sophisticated al-
gorithm outputs. These algorithms have gained popularity in generative art and architecture in recent decades
[10]. More recently, they have been used in engineering design, both for their ability to explore novel designs, and
for use as design abstractions that allow exploration of high-dimension system designs using a low-dimension set
of generative algorithm parameters. More specifically, instead of adjusting system design variables directly, we
adjust generative algorithm rule parameters to produce new designs. This indirect representation reduces prob-
lem dimension, and can support faster design space search when coupled with optimization algorithms. Applying
an optimization algorithm on generative algorithm parameters is analogous to optimizing on a mapping. For
some complex design problems, optimization of these indirect system representations have been found to produce
meaningful and improved solutions, whereas conventional direct design representations can fail to produce useful
designs [11].

In this work, we look to compare three different strategies with respect to their abilities to produce designs
for effective heat extraction. The first strategy is the Solid Isotropic Material with Penalization (SIMP) approach,
which is a mature topology optimization method that will be used as a comparison baseline. The second strategy
is to use a generative algorithm to produce a topology that can be meshed and solved with a finite element solver.
The third strategy utilizes the same generative algorithm to create a starting topology for the SIMP approach [12],
which is then used to produce an optimal topology. A discussion of findings and suggestions for future work follow.
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4. Problem Formulation
Consider a homogeneously heated design domain, as shown in Fig 1. The steady-state conductive heat transfer
across the domain can be represented by the following governing equations:

∇ · (k∇T )+ f = 0 on Ω

T = 0 on ΓD

(k∇T ) ·n = 0 on ΓN ,

(1)
W
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Figure 1: Homogeneously heated design domain.

where T is the temperature state variable, f is the heat generated, and k is the thermal conductivity of the material
in the domain, Ω. On the Dirchlet boundary, ΓD, referred to from here on as the heat sink, the temperature is
set to zero. The adiabatic Neumann boundary condition, ΓN , restricts heat flux out of the domain. The thermal
compliance of the system is given by the sum of the compliance across the design domain.

C =
∫

∇T ·q dA =
∫

∇T (k∇T )dA (2)

The initial design optimization problem considered here is:

minimize
x

C(x)

subject to V (x) =VD

R(x)≥ Rmin

(3)

where the amount of material, V (x), is constrained to be VD and the radius of a conductive path, R(x), must be
larger than Rmin. The design variable vector, x, is a general representation of the topology. This representation will
change between the different design approaches. The performance of the following three algorithms will be eval-
uated to assess the use of generative algorithms in topology design optimization for steady-state heat conduction.

4.1 SIMP Approach
The SIMP approach considers a design domain that is discretized into finite elements. Each element is assigned
a material amount, γ , which is treated as the design variable. The algorithm is driven by a sensitivity filter that
changes the material distribution from element to element. An ideal solution results in a domain consisting only
of void, γ = 0, and fully-dense material, γ = 1. A detailed description of the implementation of this approach is
outlined in [12].

4.2 Generative Design Approach
The generative design approach (GDA) is fundamentally different from SIMP. A gradient-free optimization method
is used to adjust generative algorithm parameters to minimize the objective function [11]. Each design candidate
considered in the search is represented using an abstract generative algorithm rule parameter vector. This vector is
then used to generate a design topology, which is then evaluated via finite element analysis to determine C(x). This
vector is much lower in dimension than a design vector based on direct design representation (e.g., γ for each finite
element, as in SIMP). Also, in SIMP and related approaches, the design domain discretization is used as the finite
element mesh. This can limit the numerical efficiency of thermal analysis. In the generative algorithm approach,
the design description is separate from the analysis mesh, allowing us to use a non-uniform mesh that is tailored
for each topology, improving analysis accuracy and efficiency. A novel meshing technique is introduced here that
is congruent with the unique properties of the GDA. A genetic algorithm (GA) is used here as the gradient-free
optimization method.

4.3 Hybrid Approach
The final approach considered here combines the SIMP approach with a generative algorithm. These tools are used
in a nested manner to search for an optimal topology. The outer loop GA adjusts generative algorithm parameters
to produce a topology that serves as a starting point for the SIMP algorithm (inner loop). The generated topology
is mapped to a discretized domain, and the SIMP algorithm uses gradient information to find a local minimum.
Using a local improvement strategy for individual designs within a GA population is sometimes referred to as a
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memetic algorithm [13].

5. Generative Algorithm
Optimal topologies for heat conduction problems typically resemble dendritic structures [2, 4, 5, 7]. Given this
tendency, we predict a faster convergence to optimal designs if the search is restricted to dendritic topologies. To
perform a targeted search of dendritic structures, a survey of prospective algorithms was completed. Dendritic
structures have been a topic of research interest earliest cited in 1976 [14]. In computer graphics, researchers have
attempted to efficiently and accurately reproduce dendritic structures [15, 16, 17]. In topology design, researchers
have applied different generative algorithms to various heat transfer applications [18, 19, 20, 21, 22]. Table 1 sum-
marizes the primary algorithms of interest, dividing them into three main groups. The L-System and constructal
theory algorithms use rules to define components and guide their assembly. The next class of the algorithms may
be considered “Interaction Based” where only the rules governing interactions are controlled. The Erosion Model
and SIMP techniques can also be looked at as generative algorithms as they evolve designs over time. Where the
SIMP procedure moves material, the Erosion Model adds material to the design domain. The algorithms were
evaluated on their relative number of design variables, whether or not they have a tendency to create overlapping
members, and whether or not the algorithm inherently stays within a prescribed design boundary.

Table 1: Generative algorithm assessment

Generative Algorithm # Design Vars Overlap Boundary Adherence

Building Block Based
L-System (LinenMayer) Med Yes No

Constructal Theory (Bejan) Med Yes No

Interaction Based
Reaction Diffusion Low No Yes

Particle System (Rodkaew) Low No Yes
Space Colonization (Runions) Low No Yes

Sensitivity Based
Erosion Model (Bejan) High No Yes

SIMP (Sigmund) High No Yes

The Reaction Diffusion, Particle System, and Space Colonization algorithms stand out as the best candidates due to
their low dimension and ability to handle boundary constraints. The Space Colonization algorithm was ultimately
chosen since it has been successfully scaled into three dimensions and its growth procedure intuitively translates
to a heat transfer framework. Future work should include the exploration of other candidate generative algorithms.

5.1 Space Colonization Algorithm
The Space Colonization Algorithm (SCA) used here is an adaptation of an algorithm develop by Rodkaew et al.
[15]. Hormone centers, called auxins, are strategically placed on the design domain. The algorithm begins from a
source node and grows a dendritic structure towards the auxins. This procedure is similar to the accepted theory
for vein growth in plant leaves called the canalization hypothesis [23]. This concept of growing a topology towards
hormone sources may be easily translated to a heat transfer problem where conductive paths can be grown towards
heat sources. A rigorous description of implementation in two- and three-dimensions can be followed in [16] and
[17], respectively.

Our SCA modifications for conductive heat transfer paths were made to ensure each topology satisfied con-
straints present when using the SIMP approach (Fig. 2). This supports a direct comparison between the three
algorithms presented here. The amount of conductive material is fixed, and the symmetry of boundary conditions
is used to reduce the design space by half (Fig. 2a-b). In the SCA, the endpoints of each branch are set to the
minimum radius, Rmin. Path width increases continuously closer to the heat sink (Fig. 2c). A discretized boundary
is created to better illustrate the final topology (Fig. 2d).
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(a) Initial topology (b) Enforced symmetry (c) Thickness distribution (d) Discretized domain

Figure 2: Space colonization modifications applied to a steady-state conductive heat trasnfer problem.

5.2 Application of Generative Design Approach
To use the generated topology with any of the desired approaches, the structure must be converted into a usable
form. Given the intricate nature of the generated topologies, standard meshing approaches often result in non-
conformal meshes. To handle this issue, a novel technique was developed to mesh the generated designs. This
technique was inspired by force-directed graphs [24] and particle generators. An evenly distributed grid of points
is generated on the design domain (Fig. 3a). Attractive forces are added between the discretized boundary nodes
and the grid nodes. The system is then simulated for a given time to create a point cloud with a dense particle
distribution near the boundaries (Fig. 3b). Additional particles can be introduced during the simulation to increase
node density. At the final time step, the initial grid is regenerated on the domain to enforce a minimum accuracy
for the finite element solver (Fig. 3c). Delaunay triangulation is then used to convert the point cloud into a mesh
that can be used with a finite element solver, shown in Fig. 3d.

(a) Initial grid (b) Simulate (c) Grid overlay (d) Triangulation

Figure 3: Automated meshing procedure based on force-directed particles and particle generation.

5.3 Application of Hybrid Approach
To use the generated topology with the SIMP approach it must be mapped on to a discretized domain. Starting
with a void domain, the parameter γ is set to 1 for every element which contains a node. All of the elements within
the minimum radius distance, Rmin, of each node are also set so γ = 1. The initial mapping can be seen in Fig. 4b
and is used by the SIMP algorithm to produce the optimal topology Fig. 4c.

(a) Initial topology (b) Mapping (c) Solution

Figure 4: Discretized domain mapping for the hybrid optimization approach.

4



6. Results
The SIMP approach with a sensitivity filter and a homogeneous initial material distribution was used to develop a
baseline topology for comparison. The chosen parameters follow: nelx = nely = 80, penal = 3, volfrac = 0.2,
Rmin = 2, [25]. Equivalent parameters were enforced on the generative algorithm. A GA was implemented using
the MATLAB R© global optimization toolbox. A population size of 100 and 5 generations were used with parallel
computing activated. The GA operates on each auxin location. Ten auxins were used to guide the growth of the
generative algorithm. The following experimental results were performed using an Intel R© CoreTMi5-4570 CPU
@ 3.20 GHz with 8.00 GB (RAM) 64-bit Operating System running Windows 8.1. The results presented in Table
2 are the best of 10 trials.

Table 2: Numerical results

SIMP GDA Hybrid
Objective Value 1709 1274 1528
# of Elements 6400 4710 6400

# of Design Variables 6400 40 6440
Total Time (s) 3.19 245.6 1574.0

Table 3: GA variation

GDA Hybrid
Best Objective 1274 1528

Worst Objective 1455 1598
Mean Objective 1373 1548

Std. Dev. 73 ≈ 5% 32 ≈ 2%
Mean Time (s) 220 1579

The SIMP approach was found to converge quickly to a local optimum. The GDA was found to produce the
best objective value at an increase in computational cost. The hybrid approach only produces a small improvement
in performance, but incurred significant computational expense. Table 3 presents the variation in the GA solutions
between the 10 trials. The computational cost of evaluating a topology using the GDA is outlined in Table 4, where
the amount of time to complete each task is presented.

(a) SIMP solution (b) Hybrid solution (c) Generative design solution

Figure 5: Best topologies obtained using the three optimization approaches.

Table 4: Generative design approach evaluation time

Section Generation Meshing Finite Element Solver Total
Time (s) 0.21 0.31 0.17 0.69

7. Conclusion
Given comparable resolution and topological structure, the generative design approach was found to converge on
higher performance solutions. Benefits of this approach include the explicit representation of thermally conductive
heat transfer paths, the binary assignment of material, and the low design problem dimension. While the GDA
design abstraction limits design space coverage, the search is more targeted and finds better performing designs. It
is important to note that there is a computational expense increase when comparing the generative design approach
to SIMP, yet this increase may be worthwhile due to the improvement in objective value, and for the potential to
solve more general problems.

The authors look to increase problem complexity to capitalize on the properties of generative algorithms. Sev-
eral additional studies are in progress. A concurrent path and layout planning problem that designs the optimal
placement of heat sources on a design domain, along with the best topology to extract heat, is being investigated.
An alternate formulation to maximize power density with trade-offs between the amount of conductive material
and computing elements is also being investigated. Future work will look to embed additional properties in gener-
ative algorithms that are important for multi-physics applications, as well extension to three-dimensional problems.
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