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1. Abstract  
To assess the impact of manuever load alleviation parameter changes on the buckling reserve factor a 
multidisciplinary high fidelity analysis is necessary. To this end flight maneuver calculation, linear static analysis 
using a global Finite Element Model and a structural sizing need to be performed. The use of surrogate modeling 
techniques helps to avoid the time consuming high fidelity analysis but still provides accurate results. In the frame 
of global sensitivity analysis the surrogate model is used to apply variance based extended Fourier amplitude 
sensitivity test. The contribution of input parameter variation of the manuever load alleviation system to the 
variance of the surrogate model output in terms of buckling reserve factors is measured. The sensitivity study is 
performed on the upper cover of a backward swept composite wing and the results are compared to those of the 
high fidelity analysis. Note that the variation of maneuver load alleviation parameters is nowadays assessed by 
external loads resulting from the flight maneuver calculation only. The presented approach includes reserve factors 
and hence provides an insight into the structural response. In this way those maneuver load alleviation parameters 
are found that affect the structure in terms of buckling reserve factors the most and can be used for future design 
changes and weight reductions. 
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3. Introduction 
Recent developments in the field of multidisciplinary analysis have led to an increased investigation of Maneuver 
Load Alleviation (MLA) effects on the aircraft wing [7]. Especially during early design phase of the aircraft the 
use of an active load alleviation system has a significant impact on the overall aircraft design and flight 
performance evaluation [8]. In this scope the present work demonstrates a surrogate model based sensitivity 
analysis on MLA parameters for the wing upper cover. The surrogate model is constructed using an already 
existing data basis which contains MLA parameter values and local skin buckling Reserve Factor (𝑅𝑅) values 
provided by the Airbus Operations GmbH. Note that the preparation of such a data basis takes in general several 
months and includes the work of different departments and disciplines. Figure 1 demonstrates how the high fidelity 
process looks like and in which way this long process is replaced by a surrogate model. 
 

 
 

Figure 1: High fidelity versus surrogate model process overview 

 
The surrogate model replaces the flight maneuver calculation, the de-integration of the Shear Moment Torque 
(SMT) values to strip loads along the wing and the linear static analysis using a Global Finite Element Model 
(GFEM), which consists of 1- and 2-dimensional elements, and finally the 𝑅𝑅 calculation. 
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High Dimensional Approximation (HDA) is used for the construction of the surrogate model and is based on the 
works of [5] and [6]. HDA uses a linear expansion of non-linear functions and works in a similar way as artificial 
neural networks. Internal validation of the surrogate model is performed using the concept of cross validation and 
the Root Mean Square (RMS) error as a failure index. The constructed surrogate model can be used to assess the 
effect of MLA parameter changes on the structure in terms of 𝑅𝑅 quickly. Previous works from [3] and [4] have 
shown a proper use of extended Fourier Amplitude Sensitivity Test (eFAST) applied on a surrogate model in order 
to perform sensitivity analysis. The combined use of both approximation and sensitivity analysis technique is 
called Surrogate Model Based Fourier Amplitude Sensitivity Test (SMBFAST). 
 
4. Maneuver load alleviation vs local skin buckling reserve factor 
The MLA is used for the reduction of the loads acting on the wing during flight maneuvers. For this purpose the 
vertical load factor 𝑛𝑧 at center of gravity is measured by an accelerometer and is compared against a threshold 
value. If the threshold value is reached inner and outer ailerons are deflected upwards for positive 𝑛𝑧 values. For 
negative 𝑛𝑧 values the ailerons are deflected downwards. The aileron deflections lead to a redistribution of the lift 
along the wing with an additional reduction of the wing bending moment. This effect is shown on a simple 
example in Figure 2 for the left wing of a schematic passenger aircraft. Here the aileron upward deflections shift 
the center of pressure inboards which yield a reduction of the wing root bending moment. Note that the resulting 
pitching moments are compensated with additional deflections of the elevators included in the MLA law. 
 

 
 

Figure 2: Schematic change of lift distribution with and without MLA 

 
The MLA is integrated into the flight maneuver calculation software at Airbus and consists of different control 
laws depending on the flight condition. The load factor is the main driving parameter for the activation of the MLA 
and in addition positive/negative load factor values steer the upward/downward deflection of the ailerons. But still 
the available control laws prescribe aileron deflections based on the Mach number 𝑀𝑀 and calibrated airspeed 𝑣𝑐𝑐𝑐 
as well. Hence in the scope of this study the chosen MLA parameters for analysis are 3 of its steering quantities and 
the resulting deflection angles of the inner aileron 𝜗𝑖𝑖 and the outer aileron 𝜗𝑜𝑜𝑜. Eq. (1) shows the relationship 
between the SMT values by which the change of lift distribution can be seen and the MLA as a function of 
previous 5 parameters. The same order of MLA parameters is used for the construction of the surrogate model. 
 

𝑆𝑀𝑆𝑀𝑀𝑀 = 𝑀𝑀𝑀(𝜗𝑖𝑖,𝜗𝑜𝑜𝑜 ,𝑛𝑧 ,𝑀𝑀, 𝑣𝑐𝑐𝑐)      (1) 
 
The change of the lift distribution along the wing with an active MLA leads to different wing bending moments 
which again influence the wing torque due to the sweep angle. This combined bending and torque leads to 
compression and shear loads in the skin panels of the wing upper covers while the supporting stringers are axially 
loaded only. The 𝑅𝑅 value is an estimator in order to evaluate if the structure can sustain these loads. The 𝑅𝑅 
value is the comparison of the allowable stress value against the stress values of the applied loads, cf. Eq. (2). The 
structure is statically sized if the value is higher than 1 and fails for values lower than 1. 
 

𝑅𝑅 =  𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

⋚ 1        (2) 

 
After the internal loads are computed on GFEM level many ways exist to compute the 𝑅𝑅 values during the 
structural sizing. For local skin buckling an analytical approach based on energy method is used for the presented 
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study. The different stringer bays are computed individually for local skin buckling what reduces the region of 
analysis to 1 stringer and 2 skin panels. The idealized stiffened panel is shown in Figure 3. The skin panels are 
simply supported at all edges with the stringer itself providing simply support. The approach of Rayleigh-Ritz is 
used then to solve the energy equation. More about the solution of stability problems is found in [10]. 
 

 
 

Figure 3: Schematic view of a stiffened panel 

 
5. Surrogate model based extended Fourier amplitude sensitivity Test 
In order to perform SMBFAST the software toolkit MACROS is used which is developed by the company 
DATADVANCE. The chosen method for the construction of the surrogate model is called HDA. Previous 
observations of [5] have shown superiority in time performance and accuracy compared to techniques like 
artificial neural networks, Kriging and radial basis functions. Unlike artificial neural networks which is based on a 
single type of basis functions HDA is based on linear expansion of different types of functions which are namely 
sigmoid, radial basis and linear functions. The linear expansion of the basis functions is done according to the 
approach shown in Eq. (3). Here the exact function 𝑓(𝑋) is approximated by a superimposition of mentioned basis 
functions 𝜑𝑗  and their weighting values  𝛼𝑗 . The number of superimpositions 𝑝  is estimated by a boosting 
algorithm until the accuracy is converging, cf. [6]. 
 

𝑓(𝑋) ≈  𝑓(𝑋) =  ∑ 𝛼𝑗𝜑𝑗(𝑋)𝑝
𝑗=1        (3) 

 
For the purpose of linear expansion techniques like elastic net and regularization are used for parameter 
initialization and an additional hybrid learning algorithm is used to improve these initial parameters. The latter is 
based on regression analysis and gradient based optimization. 
In order to check the accuracy of the surrogate model the data basis is partitioned into a training set 𝑛𝑜𝑡𝑐𝑖𝑖 and a 
test set 𝑛𝑜𝑡𝑐𝑜 following the principles of cross validation. The training set is used to build the model while the 
purpose of the latter is its validation. The RMS error is recommended by [9] for the cross validation of the 
surrogate model and takes into account the exact sample values 𝑦𝑖  and the predicted values 𝑓(𝑥𝑖) as shown in  
Eq. (4). 
 

𝑅𝑀𝑆 =  𝜀�𝑓(𝑋)�𝑋𝑜𝑡𝑐𝑜� =  � 1
𝑖𝑡𝑎𝑡𝑡

∑ �𝑦𝑖 − 𝑓(𝑥𝑖)�
2𝑖𝑡𝑎𝑡𝑡

𝑖=1     (4) 
 
eFAST is applied on the constructed surrogate model in order to assess the sensitivity of input parameter variations 
on the output values. eFAST is a variance decomposition method for global sensitivity analysis, cf. [3]. The 
presented core ideas are mainly based on the work of [1] with a proposal for computational implementation 
described in [2]. 
The variance value 𝑠2 takes into account the model output 𝑦𝑖  as well as its mean value 𝑦� and is an estimator for the 
change of the model output resulting by input changes. Eq. (5) shows the variance value in a general notation. 
 

𝑠2 = ∑ (𝑦𝑎−𝑦�)2𝑛
𝑎=1

𝑖−1
         (5) 

 
The idea using eFAST is to split the total variance value into partial variances according to the contribution of each 
input dimension. This variance splitting is performed in the frequency domain using a Fourier transformation of 
the surrogate model. The input parameters are then varied at frequencies according to [1] for which the Fourier 
coefficients are determined. If an input parameter has high influence on the model output the amplitude of the 
oscillation in the frequency domain is high. The surrogate model is expanded into a Fourier series in the frequency 
domain as follows: 
 

𝑓(𝑠) = ∑ {𝑀𝑘 𝑐𝑐𝑠(𝑘𝑠) + 𝐵𝑘 𝑠𝑖𝑛(𝑘𝑠)+∞
𝑘=−∞ }      (6) 
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Here the Fourier coefficients 𝑀𝑘 and 𝐵𝑘 are defined as: 
 

𝑀𝑘 = 1
𝜋 ∫ 𝑓(𝑠)𝑐𝑐𝑠 (𝑘𝑠)𝑑𝑥𝜋

−𝜋  ;  𝐵𝑘 = 1
𝜋 ∫ 𝑓(𝑠)𝑠𝑖𝑛 (𝑘𝑠)𝑑𝑥𝜋

−𝜋     (7) 
 
Using these Fourier coefficients the partial variance value 𝑠𝑖2  for each input dimension is calculated in the 
following way: 
 

𝑠𝑖2 = 2∑ (𝑀𝑘2 + 𝐵𝑘2)∞
𝑘=1         (8) 

 
Finally the main effect 𝑆𝑖 is determined using the partial and total variance values: 
 

𝑆𝑖 = 𝑐𝑎
2

𝑐2
         (9) 

 
The main effect can take values between 0 and 1 while higher values indicate more influence of the input 
parameter on the model output. For example a main effect value of 0.3 for an input parameter means that this 
parameter contributes by 30% to the total variance. 
The main effect takes only the individual contribution of each input parameter variation on the model output into 
account. On the other hand the total effect 𝑆𝑇𝑖 which is only available using the eFAST considers the interaction 
effects 𝑆𝑖𝑗  between the input parameters as well. Interaction effects quantify the impact on the output variance 
when multiple parameters are varied simultaneously. For instance the main effect of one input parameter can tend 
to zero whereas its total effect can reach high values due to its high effect on the model output in combination with 
another input parameter. Eq. (10) shows how the interaction effects are added to the main effect of each input 
dimension. 
 

𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗𝑖
𝑗=1 ,𝑤𝑖𝑤ℎ 𝑗 ≠ 𝑖        (10) 

 
6. Available data basis for the construction of the surrogate model 
The data basis for the construction of the surrogate model is provided by the Airbus Operations GmbH and consists 
of MLA parameter values and local skin buckling 𝑅𝑅 values. For the MLA parameters input as well as output 
quantities of the control law are chosen. The main input quantities that affect the results of the MLA are the load 
factor 𝑛𝑧, the Mach number 𝑀𝑀 and the calibrated airspeed 𝑣𝑐𝑐𝑐. The resulting inner and outer aileron deflections 
are taken into account as well. The 𝑅𝑅 values are computed for each skin panel of the wing upper cover but the 
minimum value for each load case overall skin panels is considered only. 
1522 different steady longitudinal maneuvers are provided using different flight parameters and which correspond 
to EASA CS 25.331 requirements. The load cases are purely mechanical ones and don’t consider any thermal or 
pressure contribution. 
Table 1 summarizes the 5 different input dimensions and the output dimension with the range of their values. In 
this way the input matrix for the HDA has the size 1522x5 and the output vector 1522x1. 
 

Table 1: Available data basis for surrogate model construction 

 
𝑅𝑅 𝜗𝑖𝑖 / deg 𝜗𝑜𝑜𝑜 / deg 𝑛𝑧 𝑀𝑀 𝑣𝑐𝑐𝑐 / m/s 

[𝑅𝑅𝑚𝑖𝑖; 𝑅𝑅𝑚𝑐𝑚] [0; -25] [15; -30] [-1; 2.5] [0.4; 0.96] [123; 193] 
 
While the input parameters are mentioned in their original scale the 𝑅𝑅 values are stated in form of 𝑅𝑅𝑚𝑖𝑖 and 
𝑅𝑅𝑚𝑐𝑚. Here 𝑅𝑅𝑚𝑖𝑖 and 𝑅𝑅𝑚𝑐𝑚 refer to the minimum and maximum values overall load cases which are already in 
the output vector. 
 
7. Results using surrogate model based Fourier amplitude sensitivity test 
For the interpretation of the results the surrogate model is discussed first and later on a conclusion on the main and 
total effects resulting from the eFAST follows. In order to construct the surrogate model the RMS error value is 
taken as an indicator for its reliability. 
In the original data basis with 1522 load cases very high 𝑅𝑅 values exist which are like noise for the training set. 
Hence the data basis is reduced by the number of load cases using the 𝑅𝑅 values in order to minimize the RMS 
error. The HDA is run 4 times with a different threshold for the 𝑅𝑅 each. From the first to the second run all the 
load cases which yield a 𝑅𝑅 value that is higher than 1.77% * 𝑅𝑅𝑚𝑐𝑚 are removed which reduces the number of 
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load cases in the data basis from 1522 to 783. At the same time the RMS error is reduced from 3.04 to 0.11. Further 
due to this load case selection all the negative load factors are removed and with this all the positive aileron 
deflections. One can conclude that the flight cases with negative load factors are not relevant for the structure in the 
scope of this study since these cases are noisy data in terms of very high 𝑅𝑅𝑠. The same principle of load case 
selection is applied to the following HDA runs, which is summarized in Table 2. 
 

Table 2: Internal validation of surrogate model using data basis in original and reduced form 

 
 HDA 1 HDA 2 HDA 3 HDA 4 

Nr. Load Cases 1522 783 567 366 
𝑅𝑅 𝑅𝑅𝑚𝑐𝑚 1.77% * 𝑅𝑅𝑚𝑐𝑚 1.50% * 𝑅𝑅𝑚𝑐𝑚 1.33% * 𝑅𝑅𝑚𝑐𝑚 

RMS 3.04 0.11 0.08 0.05 
 
The optimal solution is found in the third HDA run because here we have a RMS error below 0.10 and still have an 
adequate number of load cases for later SMBFAST (according to DATADVANCE sample size needs to be at least 
around 100 times dimensionality of input matrix). 
Figure 4 shows the absolute error between real and predicted 𝑅𝑅 values using the different HDA runs as described 
in Eq. (11). Here the predicted 𝑅𝑅 values resulting from the constructed surrogate models are compared to the real 
𝑅𝑅 values overall available load cases. One can see that the absolute error value decreases from the first until the 
last run with a reducing number of load cases. 
 

𝑒𝑒𝑒𝑅𝑅 =  𝑅𝑅𝑡𝑡𝑐𝑟 − 𝑅𝑅𝑝𝑡𝑡𝑝𝑖𝑐𝑜𝑡𝑝        (11) 
 

 
 

Figure 4: Comparison of HDA runs using 𝑒𝑒𝑒𝑅𝑅 

 
In addition Table 3 shows the change of the design space for each HDA run. The biggest change in the design 
space occurs from the first HDA run to the second one. In addition to the previously mentioned removal of positive 
aileron deflections and negative load factors here the smallest value for the calibrated airspeed has changed from 
123 m/s to 141 m/s. The design space for the following HDA runs is still filled properly although the number of 
load cases is reduced by around 200 cases each. 
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Table 3: Change of the design space due to load case reduction by 𝑅𝑅 values 

 
HDA loop 𝑅𝑅 𝜗𝑖𝑖 / deg 𝜗𝑜𝑜𝑜 / deg 𝑛𝑧 𝑀𝑀 𝑣𝑐𝑐𝑐 / m/s 

1 [𝑅𝑅𝑚𝑖𝑖; 𝑅𝑅𝑚𝑐𝑚] [0; -25] [15; -30] [-1; 2.5] [0.4; 0.96] [123; 193] 
2 [𝑅𝑅𝑚𝑖𝑖; 1.77% * 𝑅𝑅𝑚𝑐𝑚] [0; -25] [0; -30] [1.5; 2.5] [0.4; 0.96] [141; 193] 
3 [𝑅𝑅𝑚𝑖𝑖; 1.50% * 𝑅𝑅𝑚𝑐𝑚] [0; -25] [0; -30] [1.7; 2.5] [0.4; 0.96] [141; 193] 
4 [𝑅𝑅𝑚𝑖𝑖; 1.33% * 𝑅𝑅𝑚𝑐𝑚] [0; -25] [0; -30] [1.7; 2.5] [0.4; 0.87] [141; 193] 

 
The third HDA run is used for the application of the eFAST. Figure 5 shows a comparison of the total and main 
effect values for the chosen MLA parameters. The diagram demonstrates that in terms of ranking both main and 
total effect are identical. In both cases changes of the load factor 𝑛𝑧 result in the highest changes of 𝑅𝑅 values. The 
main effect value for the load factor is 0.037 which means that the load factor causes 3.7% of the total variance 
only. On the other hand the total effect value for the load factor is 0.73 which means that 73% of the total variance 
relates to this input parameter. 
The Mach number and the calibrated airspeed are listed next in the ranking. One can conclude that the flight 
parameters itself which are more an input for the MLA law have much higher influence on the 𝑅𝑅 than the aileron 
deflections. Furthermore the total effects have much higher values than the main effects which yield high influence 
on the 𝑅𝑅 by varying the input parameters simultaneously. The combinational effect of the MLA parameters 
drives the 𝑅𝑅 value more than just changing one parameter and keeping the others constant. Hence the main effect 
contributions are negligible whereas the interaction effects are the main drivers. 
Note that the shown behaviour of main and total effects is confirmed with results coming from high fidelity 
analysis inside Airbus Operations GmbH. 
 

 
 

Figure 5: Main and total effects of MLA parameters on 𝑅𝑅 value 

 
The application of eFAST on the constructed surrogate model from the first HDA run has shown different ranking 
and values for the total and main effects compared to the results shown in Figure 5. One can conclude that the 
results of the SMBFAST are strongly dependent on the quality of the sampled data basis and can lead in the worst 
case to conclusions which are not consistent with engineering judgment. 
 
8. Summary and outlook 
HDA is used in order to construct a cheap and fast to evaluate surrogate model compared to the overall industrial 
process. The application of eFAST yield in main and total effect values which are confirmed with high fidelity 
analysis inside Airbus Operations GmbH. The study has shown much higher influence of the flight parameters on 
the 𝑅𝑅 values compared to the aileron deflections for different flight points. But still for a given flight point the 
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load factor, the Mach number and the calibrated airspeed are constant while the aileron deflections can be 
modified. Hence the aileron deflections are the only parameters that can be varied in order to affect the 𝑅𝑅 values 
and thus to reach a reduction of the structural weight. 
In future applications the constructed surrogate model can be used for instance for optimization of the aileron 
deflections as shown in Figure 6. Here the surrogate model of the third HDA run is used in order to plot the 
evolution of the 𝑅𝑅 value with the outer aileron deflection as the variable parameter and the other parameters hold 
on constant value. The 𝑅𝑅 values in the plot are normalized to 1. In Figure 6 the change of 𝑅𝑅 from its minimum 
to its maximum value is around 13% which can result in weight savings even if they are small. Hence in this way 
one can choose a certain flight condition and find the optimum value for the aileron deflections using surrogate 
model based optimization algorithms. 
 

 
 

Figure 6: Evolution of normalized 𝑅𝑅 by outer aileron deflection changes for constant flight parameters 
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