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1. Abstract
Structures designed by topology optimization (TO) are frequently sensitive to loads different from the ones ac-
counted for in the optimization. In extreme cases this means that loads differing ever so slightly from the ones it
was designed to carry may cause a structure to collapse. It is therefore clear that handling uncertainty regarding the
actual loadings is important. To address this issue in a systematic manner is one of the main goals in the field of
robust TO. In this work we present a deterministic robust formulation of TO for maximum stiffness design which
accounts for uncertain variations around a set of nominal loads. The idea is to find a design which minimizes the
maximum compliance obtained as the loads vary in infinite, so-called uncertainty sets. This naturally gives rise to
a semi-infinite optimization problem, which we here reformulate into a non-linear, semi-definite program. With
appropriate numerical algorithms this optimization problem can be solved at a cost similar to that of solving a
standard multiple load-case TO problem with the number of loads equal to the number of spatial dimensions plus
one, times the number of nominal loads. In contrast to most previously suggested methods, which can only be
applied to small-scale problems, the presented method is – as illustrated by a numerical example – well-suited for
large-scale TO problems.
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3. Introduction
Robust problem formulations in structural optimization can be divided into two groups [3]: (i) stochastic and (ii)
deterministic, or worst-case. The stochastic approach is perhaps the most common. It can essentially be divided
into two classes: reliability-based methods [15], often based on an inner loop where the structure is optimized and
an outer loop where the uncertainty parameters are modified, and ”sampling-based” methods, where the stochastic
problem is converted into a deterministic by sampling from a probability distribution [10]. A drawback of stochas-
tic methods is their reliance on good statistical data, and, in certain applications more importantly [3], they only
provide probabilistic guarantees of robustness.

In this paper we consider robust deterministic topology optimization of discretized continuum bodies governed
by a linear equilibrium equation of the form

Ku = f0 + fvar

where f0 is a given fixed load and fvar is allowed to vary in some uncertainty set. The special case when
f0 = 0 has been treated in both finite- and infinite-dimensional settings by several authors [2, 8, 17, 5, 13]. The
general case with a non-zero f0 is however less explored. Ben-Tal et al. [3, p. 215] showed how to formulate
the problem as a semi-definite program, which was however not suitable for large-scale problems (see also [7]).
Kanno [14] proposed an optimization problem in the form of a mathematical program with equilibrium constraints
(MPEC). That formulation resembles the so-called simultaneous formulation in traditional stiffness optimization
[9] involving the equilibrium equation as an explicit constraint; consequently it may be difficult to solve large-
scale instances of the MPEC-formulation. To the authors’ knowledge, the only paper dealing with large-scale,
deterministic robust structural optimization is [12]. Therein the authors propose a special algorithm to solve a
generalized, inhomogeneous eigenvalue problem arising from the maximization of the compliance. That algorithm
however requires up to 15 factorizations of a system matrix (involving the stiffness matrix) for each design, while
the method we propose requires just one. In addition, the method proposed herein is readily implemented using
standard linear solvers and software for non-linear programming.

In the following the space of symmetric n × n matrices with real entries is denoted Sn. For A and B in Sn,
”A � B” (”A � B”) means that A−B is positive semi-definite (positive definite). The set of symmetric, positive
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semi-definite matrices is denoted Sn+. The Euclidean vector norm is denoted || · ||, R+ is the set of non-negative
real numbers, and I denotes an identity matrix of appropriate size.

4. The model
We consider a linearly elastic continuum body divided into m elements. Associated with each element is a design
variable xi which determines whether there is material in the element or not. The design variables are collected in
a vector x of length m. To avoid numerical issues such as checkerboards and mesh dependency a different set of
variables, referred to as physical variables, are used to compute the stiffness matrix (and mass). These variables
are related to the design variables through a so-called filter [6], using which the i-th physical variable is written as

ρi(x) =

m∑
j=1

Ψijxj , Ψij =
φijvj∑m
k=1 φikvk

, φij = max (0, R− ||ei − ej ||) ,

where vj and ej denotes the volume and the position of the geometric center, respectively, of element j, and R is
the filter radius.

The structure is assumed to be in quasi-static equilibrium undergoing small deformations when subject to a
nodal load vector fr. By the standard displacement-based FEM the nodal displacement vector u should therefore
satisfy

K(x)u = fr, (1)

where, following the SIMP-approach to TO, the stiffness matrix K(x) =
∑m
i=1 ρi(x)pKi, in which p is a positive

constant and Ki ∈ Sn+ are element stiffness matrices. Here n denotes the number of degrees of freedom. We
assume that rigid body motions are prevented, so K(1) � 0, where 1 is a vector of ones.

The load vector in (1) is defined as
fr = f0 + BTr, (2)

where r ∈ T = {r ∈ Rd | ||r|| ≤ 1}, with d the number of spatial dimensions. The vector f0, the nominal load, is
fixed during optimization, while BTr, where BT ∈ Rn×d, is allowed to vary — it is through this variation that un-
certainty is accounted for. The (fixed) matrix B can be used to specify which nodes are subject to load-uncertainty,
and in which direction the uncertainty (if any) is greatest.

5. Optimization problem
We begin by defining the worst-case compliance as

max
r∈T

fT
rur(x), (3)

where ur(x) solves (1). Assuming constant density, the problem of minimizing the worst-case compliance with
an upper bound on the weight can now be written as

min
x∈H

max
||r||≤1

fT
rK(x)−1fr,

where H = {x ∈ Rm | ε ≤ xi ≤ 1, i = 1, . . . ,m,
∑m
i=1 viρi(x) ≤ v}, in which the positive constant v is the

upper bound on the volume. The small positive constant ε ensures that the stiffness matrix is positive definite if
the structure is appropriately supported.

A natural thing to do when confronted with a min-max problem is to reformulate it into a bound formulation:

min
x∈H,z∈R+

z

subject to fT
rK(x)−1fr ≤ z, ∀r ∈ Rd : ||r|| ≤ 1,

(4)

where z is an additional variable and ”:” should be read as ”such that”. Since there is now an infinite number
of constraints it is not immediately clear that anything has been gained from this reformulation. However, the
semi-infinite problem (4) can be reformulated as a non-linear semi-definite program using the following result.

Theorem 1. fT
rK(x)−1fr ≤ z for all r ∈ Rd : ||r|| ≤ 1 if and only if there exists a λ ∈ R+ such that(

λI 0
0 z − λ

)
−
(

B

fT
0

)
K(x)−1

(
BT f0

)
� 0.

To prove Theorem 1 we use two lemmas:
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Lemma 1. [S-lemma] (See [3, p. 483] for a proof.) For A1 and A2 in Sn, with yT
0A1y0 > 0 for some y0,

yTA1y ≥ 0⇒ yTA2y ≥ 0 ⇔ ∃λ ∈ R+ : A2 � λA1.

Lemma 2. For A ∈ Rn×n,(
y
1

)T(
A b

bT c

)(
y
1

)
≥ 0 ∀y : ||y||2 ≤ 1 ⇔

(
y
w

)T(
A b

bT c

)(
y
w

)
≥ 0 ∀(y, w) : ||y||2 ≤ w2.

Proof. The implication from right to left follows immediately by taking w = 1. Now consider going from left to
right, beginning with(

y
1

)T(
A b

bT c

)(
y
1

)
= yTAy + 2bTy + c ≥ 0 ∀y : ||y||2 ≤ 1. (5)

Let y = u/w, with ||u||2 ≤ w2 and w 6= 0. Clearly ||y||2 = ||u/w||2 = ||u||2/w2 ≤ 1. Substituting y = u/w
in (5) gives

uTAu + 2bTuw + cw2 ≥ 0, ∀(u, w) : ||u||2 ≤ w2, w 6= 0.

Going back to the statement of the lemma it is clear that w = 0 implies y = 0, reducing the right side to the trivial
inequality 0 ≥ 0. �

Proof of Theorem 1. Straightforward algebraic manipulations show that (the argument ”x” is omitted)

fT
rK
−1fr ≤ z, ∀r ∈ Rd : ||r|| ≤ 1 ⇔

z − fT
0K
−1f0 − rTBK−1BTr − 2rTBK−1f0 ≥ 0 ∀r ∈ Rd : ||r|| ≤ 1.

By Lemma 2 the last statement is equivalent to

w2
(
z − fT

0K
−1f0

)
− yTBK−1BTy − 2yTBK−1f0w ≥ 0, ∀(y, w) ∈ Rd+1 : ||y||2 ≤ w2. (6)

Since the condition ||y||2 ≤ w2 can be written as(
y
w

)T

A1

(
y
w

)
≥ 0, where A1 =

(
−I 0
0 1

)
,

Lemma 1 can be invoked to conclude that (6) is equivalent to

∃λ ∈ R+ :

(
λI 0
0 z − λ

)
−
(

B

fT
0

)
K−1

(
BT f0

)
� 0.

�

Remark. A different proof of Theorem 1 can be obtained by using Theorem 8.2.3 in [3] together with the Schur-
complement theorem [3, Lemma 6.3.4]. By the former theorem one can also obtain a formulation where K need
not be invertible [7, Proposition 2],[3, p. 215]; the price to pay is a matrix inequality of large size, something which
is, at present, difficult to handle numerically.

Using Theorem 1 we now replace (4) by the following problem:

min
x∈H, z∈R+, λ∈R+

z

subject to
(
λI 0
0 z − λ

)
−
(

B

fT
0

)
K(x)−1

(
BT f0

)
� 0.

(7)

It can be shown [4, Prop. 5.72 (i)] that if K is linear in x, the matrix inequality defines a convex set, making (7) a
convex problem. An extension to include multiple loads, each in the form of a nominal load plus an uncertainty, is
straightforward, but for notational simplicity we have refrained from doing this here.

Theorem 2. The set of globally optimal solutions to (7) is non-empty and compact.

Proof. Take x0 ∈ H and let

A(x) =

(
B

fT
0

)
K(x)−1

(
BT f0

)
, (8)
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and A0 = A(x0). Let λ0 = λmax(A0) ≥ 0 and z0 = 2λmax(A0) ≥ 0, where λmax(·) denotes the maximum
eigenvalue. The inequality

A0 � λmax(A0)I =

(
λ0I 0
0 z0 − λ0

)
,

then shows that the feasible set of (7) is non-empty.
The inequality A(x) � 0 holds for all x ∈ H and implies that z ≥ λ for any feasible (x, z, λ). The globally

optimal solutions to (7) are thus contained in the set

F = {(x, z, λ) | x ∈ H, 0 ≤ z ≤ z0, 0 ≤ λ ≤ z0, (x, z, λ) satisfies the matrix inequality in (7)}.

We now consider the problem
min

(x,z,λ)∈F
z,

which has the same set of globally optimal solutions as (7). Since F is the intersection of a compact and a closed
set, hence compact, and the objective function is lower semi-continuous, existence of a non-empty, compact set of
globally optimal solutions follows from Weierstrass’ theorem [1, Theorem 4.7]. �

The proof of Theorem 2 shows how a feasible initial point for (7) may be chosen, and provides upper bounds
on z and λ.

Remark. The worst-case uncertainty vector, and therefore the worst-case load vector fr, depends on the design
through

r(x) ∈ arg max
||r||≤1

(rTB + fT
0)K(x)−1(f0 + BTr) = arg max

||r||≤1

[
rTH(x)r + 2fT

0K(x)−1BTr
]
,

where H(x) = BK(x)−1BT. The first-order necessary optimality conditions for this problem read

H(x)r − b(x) = µr, ||r|| = 1, (9)

where b(x) = −2BK(x)−1f0 and µ ∈ R+ is a Lagrange multiplier. (9) is an inhomogeneous eigenvalue prob-
lem [16]; r(x) is an eigenvector associated with the maximum eigenvalue. Since the multiplicity of the latter may
be greater than one we do not expect x→ r(x) to be smooth in general.

6. Numerical treatment
To evaluate the left-hand side of the matrix constraint, rather than forming K(x)−1 explicitly, we solve the linear
system

K(x)U =
(
BT f0

)
(10)

for U ∈ Rn×(d+1). The computational cost, which is dominated by the factorization of K(x), for this is the same
as that of solving the equilibrium equations in a standard multiple-load case formulation with d+ 1 loads.

Scaling is important when solving optimization problems numerically. To this end, in view of the proof of
Theorem 2, we introduce new variables z := z/z0 and λ := λ/z0, where z0 = 2λmax(A0), with A0 defined in
the proof of Theorem 2. Now (7) can be replaced by

min
x∈H, z∈[0,1], λ∈[0,1]

z

subject to
(
λI 0
0 z − λ

)
− 1

z0

(
B

fT
0

)
U(x) � 0.

(11)

where U(x) denotes the solution to (10).
Problem (11) is converted into an ordinary non-linear optimization problem (NLP) by noting that Sq+ 3 A ⇔

∃L ∈ Lq : A = LLT, where Lq denotes the set of lower triangular q × q-matrices with non-negative diagonal
entries. This leads to the problem

min
x∈H, z∈[0,1], λ∈[0,1],L∈Ld+1

[−1,1]

z

subject to
(
λI 0
0 z − λ

)
− 1

z0

(
B

fT
0

)
U(x) = LLT,

(12)
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where Ld+1
[−1,1] denotes the set of lower triangular q × q-matrices with each diagonal entry in [0, 1] and each off-

diagonal entry in [−1, 1]. These bounds are motivated by the fact that(
λI 0
0 z − λ

)
− 1

z0

(
B

fT
0

)
U(x) � I,

which holds since λ ≤ 1 and z ≤ 1 and the second matrix to the left is positive semi-definite [recall (8)]. At a
feasible point then, LLT � I , showing that the diagonal elements of LLT − I must be non-positive. The latter
implies the aforementioned bounds on the entries of L.

A theoretical drawback of the NLP-formulation (12) is that it might have stationary points not present in prob-
lem (11). In practise we have however never experienced convergence to such points, and this theoretical drawback
therefore outweighs practical drawbacks of e.g. PENLAB [11] which requires evaluation of second-order deriva-
tives.

7. Numerical example
Figure 1 shows a numerical example. The ground structure is a cylinder, meshed with m = 14640 8-node hexahe-
dral elements, resulting in a total of n = 46800 displacement degrees of freedom. Problem (12) is solved with the

x

z

y x

z

y

Figure 1: Numerical example. Left: Ground structure, with dimensions in [mm]. The figure shows the total load as
the sum of a nominal load (dashed arrow in negative z-direction) and an uncertain part which varies in the sphere.
Middle: Minimum compliance design for a single load case. Right: Worst-case compliance design.

code fminsdp for non-linear SDPs [18], using Ipopt [19] as NLP-solver. First-order derivatives of the non-linear
part of the matrix constraint are computed using the adjoint method [9], and Ipopt’s limited-memory quasi-Newton
approximation, with 90 correction pairs, is used for the Hessian of the Lagrangian. The update strategy for the
barrier parameter is set to ”adaptive”, and default settings used otherwise.

A load of 1000 [N] applied at the top of the structure pointing in the negative z-direction is used as the nominal
load, and in the robust formulation we allow for variations of up to 100 [N] in each coordinate direction, i.e. the
matrix B ∈ R3×46800 in (2) is given by B = (0 100I 0), where I is a three-by-three identity matrix positioned
at the degrees of freedoms associated with the loaded node.

The middle plot in Fig. 1 shows a design obtained when uncertainty is not accounted for; the result is a curved
column. The right plot shows a designed obtained when taking load variations into account. Now the column is
supported by two legs – intuitively a more robust design.

8. Concluding remarks
We have presented a problem formulation for deterministic worst-case compliance design in the form of a non-
linear semi-definite program whose computational cost is similar to that of solving an ordinary minimum compli-
ance problem with three (in 2D) or four (in 3D) load cases. The optimization problems are readily solved using
software for ordinary NLPs.
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