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1. Abstract  
At early design phases, taking into account uncertainty in the optimization of a multidisciplinary system is 
essential to assess its optimal performances. Uncertainty Multidisciplinary Design Optimization methods aim at 
organizing not only the different disciplinary analyses, the uncertainty propagation and the optimization, but also 
the handling of interdisciplinary couplings under uncertainty. A new multi-level hierarchical MDO formulation 
ensuring the coupling satisfaction for all the realizations of the uncertain variables is presented in this paper. 
Coupling satisfaction in realizations is essential to maintain the equivalence between the coupled and decoupled 
UMDO formulations and therefore to ensure the physical consistency of the obtained designs. The proposed 
approach relies on two levels of optimization and surrogate model in order to ensure, at the convergence of the 
optimization problem, the coupling functional relations between the disciplines. The proposed formulation is 
compared to a classical MDO formulation on the design of a two stage sounding rocket. 
 
2. Keywords: MDO formulation, Stage-Wise Decomposition formulation, Uncertainty, rocket design. 
 
3. Introduction 
Multidisciplinary Design Optimization (MDO) is a set of engineering methodologies to optimize systems modeled 
as a set of coupled disciplinary analyses (also called subsystem analyses). For example, a launch vehicle is 
customarily decomposed into interacting submodels for propulsion, aerodynamics, trajectory, mass and structure. 
Taking into account the different disciplines requires to model and manage the interactions between them all along 
the design process. Using MDO in the early design phases may improve system performances and decrease design 
cycle cost [1]. At these steps, the determination of the optimal system architecture requires a complete design 
space exploration through repeated discipline simulations. To make the exploration computationally affordable, 
low fidelity disciplinary analyses are mostly employed, which introduce uncertainties. Handling the uncertainties 
at early design phases is thus essential to efficiently characterize the optimal system performances and its 
feasibility because it may reduce the duration and the cost of the next design phases. Uncertainty-based 
Multidisciplinary Design Optimization (UMDO) aims at solving MDO problems in the presence of uncertainty. 
This induces several new challenges compared to deterministic MDO: uncertainty modeling, uncertainty 
propagation, optimization under uncertainty and interdisciplinary coupling handling under uncertainty. In this 
paper, we focus on the interdisciplinary coupling satisfaction as it is essential to ensure the system physical 
consistency.  
In deterministic MDO, the interactions between the disciplines are represented by coupling variables and the 
system multidisciplinary consistency is described as a set of interdisciplinary equations to be satisfied. Two types 
of coupling handling approaches may be distinguished: the coupled versus the decoupled methods depending if 
the couplings are found by MultiDisciplinary Analysis (MDA) or by the system optimizer at the MDO 
convergence. These methods may be used within single-level or multi-level UMDO formulations. Compared to 
single-level formulations (e.g. Multi Discipline Feasible (MDF) [2], Individual Discipline Feasible (IDF) [2]) 
multi-level formulations (e.g. Collaborative Optimization (CO), [4], Analytical Target Cascading (ATC) [3]) 
facilitate the system level optimization by introducing additional disciplinary optimizers in order to distribute the 
problem complexity over different dedicated disciplinary optimizations.   
In the presence of uncertainty, the coupling variables are uncertain variables. Coupled single-level UMDO 
formulations (Fig.1) have been proposed [5,6] based on MDF combining Crude Monte Carlo (CMC) and MDA. 
Whereas in deterministic MDO, for a given design there is only one set of coupling variables that satisfies the 
interdisciplinary coupling equations, in UMDO, the uncertain coupling variables have to satisfy the system of 
interdisciplinary equations for each realization of the uncertain variables. The computational cost of the coupled 
single-level approaches becomes prohibitive due to the required number of discipline evaluations. In literature 
[7,8], decoupled single and multi-level UMDO formulations have therefore been investigated to overcome this 
computational burden. These approaches ensure the multidisciplinary system consistency for some particular 
realizations (e.g. at the Most Probable failure Point) or for the first statistical moments (i.e. mean, standard 
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deviation) of the uncertain coupling variables. Thus, it allows to limit the number of variables that have to be 
handled by the optimizer, however it does not ensure the multidisciplinary consistency of the system design for all 
the uncertain variable realizations. 
The objective of this paper is to introduce a new multi-level UMDO formulation (named Multi-level Hierarchical 
Optimization under uncertainty - MHOU) with functional coupling satisfaction under uncertainty (i.e. in 
realizations). The rest of the paper is organized as follows. First (section 4), the existing coupled MDF formulation 
under uncertainty is introduced. In a second part (section 5), MHOU formulation is introduced by using subsystem 
optimizers in addition to the system level optimizer in order to distribute the UMDO problem complexity over 
different dedicated subsystem optimizations. The proposed formulation hierarchically optimizes the whole 
system. It relies on the iterative construction of Polynomial Chaos Expansions (PCE) in order to represent, at the 
convergence of the UMDO problem, the feedback couplings between the disciplines as would MDA do. PCEs 
allow one to remove the feedback couplings and to introduce multi-level optimization while ensuring the physical 
relevance of the obtained design at the convergence. Finally, in a third part (section 6), the proposed formulation is 
compared to MDF on the design of a two solid stage sounding rocket. 
 
4. Coupled approach: Multi Discipline Feasible (MDF) under uncertainty 
The most straightforward UMDO formulation is an adaptation of the single-level deterministic MDF formulation 
(Fig.1) which is a coupled approach. It consists in ensuring the coupling satisfaction by propagating uncertainty 
through the disciplines with CMC and to solve the system of interdisciplinary equations by MDA for each 
realization generated using CMC [5,6]. MDF under uncertainty can be formulated as follows: 
 min

𝒛∈𝓩
Ξ 𝑓 𝒛, 𝒀 𝒛, 𝑼 , 𝑼  (1) 

 s. t.    𝕂 𝒈 𝒛, 𝒀 𝒛, 𝑼 , 𝑼 ≤ 0 (2) 
with, 𝒛 the design variable vector belonging to 𝓩, 𝑼 the uncertain variable vector defined by 𝜉𝑼(∙) the joint 
probability distribution function (PDF) on the sample space 𝛀, 𝑓(∙) the performance function, Ξ[∙] an uncertainty 
measure of the performance function (e.g. expected value), 𝒈(∙) the inequality constraint function vector and 𝕂 ∙  
an uncertainty measure of the inequality constraint (e.g. probability of failure). In the rest of the paper, an uncertain 
variable vector is noted 𝑼 and a realization of this vector 𝒖. For a given design variable vector 𝒛<, to evaluate the 
uncertainty measure Ξ 𝑓 𝒛<, 𝒀 𝒛, 𝑼 , 𝑼 , it is necessary to propagate the uncertainty in the system models. CMC 
is used to estimate Ξ[∙] and 𝕂 ∙ . To ensure multidisciplinary system consistency, the input coupling variable 
vector 𝒀, which depends of 𝒛 and 𝑼,  has to satisfy the following system of coupled equations: 
 

∀𝒖 ∈ 𝛀, ∀ 𝑖, 𝑗 ∈ 1, … , 𝑁 𝟐  𝑖 ≠ 𝑗,
𝒚FG = 𝒄FG 𝒛F, 𝒚.F, 𝒖
𝒚GF = 𝒄GF 𝒛G, 𝒚.G, 𝒖

 (3) 

where 𝑁 is the number of disciplines, 𝒚FG is the input coupling variable vector from discipline 𝑖 to discipline 𝑗, 𝒚.F 
is the input coupling vector composed of the input coupling coming from all disciplines (represented by the dot) to 
the discipline 𝑖, and 𝒄FG(∙) is the output coupling vector from discipline 𝑖 to discipline 𝑗. Eqs.(3) is a system of 
coupled equations which has to be solved for all the realizations of the uncertain variables in order to ensure that 
the input coupling variables and the corresponding output coupling variables are equal. For one realization of the 
uncertain variable vector, the solving of Eqs.(3) is called a MultiDisciplinary Analysis (MDA) and often involves 
Fixed Point Iteration method. To estimate Ξ ∙  and 𝕂 ∙ , repeated MDAs are performed for a set of uncertain 
variable realizations sampled by CMC. The computational cost of MDA under uncertainty corresponds to that of 
one MDA multiplied by the number of uncertain variable realizations. For each iteration in 𝒛 of MDF under 
uncertainty, MDA is performed resulting in a prohibitive computational cost due to a large numbers of calls to the 
disciplines to solve Eqs.(1-2). In order to reduce the computational cost, a decoupled multi-level UMDO 
formulation is proposed in the following section. 
 
5. Proposed decoupled multi-level formulation: Multi-level Hierarchical Optimization under Uncertainty 
5.1. Interdisciplinary coupling satisfaction with a decoupled approach 
In order to avoid the repeated MDAs, decoupled approaches aim at propagating uncertainty on decoupled 
disciplines allowing one to evaluate them in parallel and to ensure coupling satisfaction by introducing equality 
constraint in the UMDO formulation. However, two main challenges are faced to decouple the design process: 
•   Uncertain input coupling variable vector 𝒀 has to be handled by the system level optimizer. However, an 

optimizer can only handle a finite number of parameters to represent these uncertain variables. It is necessary 
to find a technique to represent an infinite number of realizations of the input uncertain coupling variables 
with a finite number of parameters. 

•   Equality constraints between the input coupling variables 𝒀 and the output coupling variables computed by 
𝒄(∙), which are two uncertain variables, have to be imposed. Equality between two uncertain variables 
corresponds to an equality between two functions which is sometimes reduced to equality between 
parameters [7,8] (equality in statistical moments, in realizations, etc.). 

In order to overcome these two issues, an approach has been proposed [9] based on a surrogate model of the 
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coupling functional relations. In deterministic decoupled MDO approaches, considering a scalar coupling 𝑦FG from 
the discipline 𝑖 to the discipline 𝑗, only one equality constraint in the MDO formulation is added between the input 
coupling variable 𝑦FG and the output coupling variable 𝑦FG = 𝑐FG(𝒛F, 𝑦.F). 
However, in the presence of uncertainty, coupling satisfaction involves an equality constraint between two 
uncertain variables. To ensure coupling satisfaction in realizations, an infinite number of equality constraints have 
to be imposed, one for each realization of the uncertain variables: 
 ∀𝒖 ∈ 𝛀, 𝑦FG = 𝑐FG(𝒛𝒊, 𝑦.F, 𝒖) (4) 
To solve this problem, an new integral form for the interdisciplinary coupling constraint is introduced: 
 

𝐽FG = 𝑐FG 𝒛F, 𝑦.F, 𝒖 − 𝑦FG
O
𝜉𝑼 𝒖 d𝒖 = 𝟎

𝛀
 (5) 

In order to have the integral in Eq.(5) equal to zero, the input coupling variables must be equal to the output 
coupling variables for each realization of the uncertain variables. Nevertheless, to decouple the disciplines, the 
uncertain input coupling variables 𝑦FG have to be handled by the optimizer. In order to solve this second issue, a 
surrogate model of the coupling relation is introduced: 𝑦FG → 𝑦FG 𝑼, 𝜶(FG) . The surrogate model, written 
𝑦FG 𝑼, 𝜶(FG) , provides a functional representation of the dependency between the uncertain variables 𝑼 and the 
input coupling variables with 𝜶(FG) the vector of the metamodel parameters. To decouple the disciplines, the 
surrogate model parameters 𝜶(FG) are handled by the system level optimizer. Note that, in order to keep 𝑦FG simple, 
the dependency between 𝑦FG and 𝒛 is not present here: 𝑦FG is not a function of 𝒛, it is learned for a specific 𝒛∗ which 
is the unknown UMDO optimum. We propose to model the coupling functional relations with Polynomial Chaos 
Expansion (PCE) because this surrogate model presents advantages in terms of uncertainty analysis and 
propagation [10]. PCE allows one to approximate a function ℎ:  𝛀 → ℝ according to: 
 

ℎ 𝑼 ≃ 𝛼ZΨ\ 𝑼
]

Z^_

= ℎ 𝑼, 𝜶  (6) 

with Ψ_,⋯ ,Ψa a basis of orthogonal polynomials and 𝑑 the truncation degree. The choice of the polynomial basis 
is made consistently with the distribution 𝜉𝑼(∙)  of the input random variables U. The polynomial basis is 
orthogonal to the weighting function [10] of the input uncertain variable distributions. The difficulty in PCE is the 
estimation of the polynomial coefficients. Different techniques may be employed if black box functions are 
considered: the orthogonal spectral projection or the regression [10]. This approach may be easily generalized to 
coupling vector 𝒚FG. In the proposed formulation, PCE coefficients are determined with the regression method 
adapted to multi-level optimization. PCE is used to model the input coupling variables 𝒀 and the PCE coefficients 
𝜶 are handled by the system level optimizer. The proposed formulation is presented in the next section. 
 
5.2. Multi-level Hierarchical Optimization under Uncertainty (MHOU) 
MHOU formulation (Fig. 2) is inspired from SWORD formulation [11] modified for uncertainty handling. MHOU 
is a semi-decoupled multi-level formulation ensuring interdisciplinary coupling satisfaction for all the realizations 
of the uncertain variables. It assumes that the system level objective 𝑓(∙) is decomposable into a sum of the 
subsystem contributions. For instance, the Gross Lift-Off Weight (GLOW) of a launch vehicle is decomposable as 
the sum of the stage masses. In the proposed formulation, the optimization process is the following: 

§   At the system level: 
 

min
𝒛𝒔𝒉∈𝓩𝒔𝒉,𝜶

     Ξ 𝑓Z 𝒛𝒔𝒉, 𝒛Z∗ , 𝒚 𝑼, 𝜶 , 𝑼
e

Z^_

 (7) 

 s. t.    𝕂 𝒈 𝒛𝒔𝒉, 𝒛Z∗ , 𝒚 𝑼, 𝜶 , 𝑼 ≤ 0 (8) 
 ∀𝑗 ∈ 1, … , 𝑁 , 𝑱.G∗ = 𝟎 (9) 
   ∀𝑘 ∈ 1, … , 𝑁 ,𝕂 𝒈Z 𝒛𝒔𝒉, 𝒛Z∗ , 𝒚 𝑼, 𝜶 , 𝑼 ≤ 0 (10) 

§   At the subsystem level: 
𝑘 = 𝑁  
 While  𝑘 > 0 

Given  𝒚eZ,⋯ , 𝐲(Zp_)Z  
For  the  𝑘tu  subsystem:  

 𝐳\∗ = argmin
                            𝒛|∈𝓩|

Ξ 𝑓Z 𝒛𝒔𝒉, 𝒛Z, 𝒚 𝑼, 𝜶 , 𝑼  (11) 
 s. t.    𝕂 𝒈Z 𝒛𝒔𝒉, 𝒛Z, 𝒚 𝑼, 𝜶 , 𝑼 ≤ 0 (12) 
 

∀𝑗 ∈ {𝑘 + 1,… , 𝑁}  ,   𝑱ZG = 𝒄ZG 𝒛𝒔𝒉, 𝒛Z  𝒚.Z 𝒖, 𝜶 .Z , 𝒖Z − 𝒚ZG 𝒖, 𝜶(ZG)
O
𝜉𝑼 𝒖 d𝒖 = 𝟎

𝛀
 (13) 

 𝑘 ← 𝑘 − 1  
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where Eq. (13) is considered for 𝑘 ≠ 𝑁. 𝒛Z is the local design variable vector of the kth subsystem and 𝒛𝒔𝒉 is the 
shared design variable vector between several subsystems. This formulation allows one to optimize each 
subsystem separately in a hierarchical process. The system level optimizer handles 𝒛𝒔𝒉 and the PCE coefficients 𝜶 
of the feedback coupling variables. The handling of PCE coefficients at the system level allows one to remove the 
feedback couplings and to optimize the subsystems in sequence. The surrogate models of the functional feedback 
couplings provide the required input couplings to the different subsystems. The kth subsystem level optimizer 
handles 𝒛Z and the corresponding problem aims at minimizing the subsystem contribution to the system objective 
while satisfying the subsystem level constraints 𝒈Z(∙) . The interdisciplinary coupling constraint Eq. (13) 
guarantees the couplings whatever the realization of the uncertain variables. This formulation is particularly suited 
for launch vehicle in order to decompose the design process into the different stage optimizations [11].  
 

  
Figure 1 : MDF under uncertainty Figure 2 : MHOU formulation 

 
6. Application: two stage sounding rocket design 
The launch vehicle design test case consists of the design of a two solid stage sounding rocket for a payload of 
800kg that has to reach an altitude of 300km. Four disciplines are involved: propulsion, mass budget and geometry 
design, aerodynamics and trajectory (Figure 3). The sounding rocket design is decomposed into two subsystems, 
one for each stage. MHOU formulation enables a hierarchical design process decomposed into two teams, one for 
each sounding rocket stage. The kth subsystem objective is to minimize a function of the stage mass  𝔼 𝑀Z ∙ +
2𝜎 𝑀Z ∙  (with 𝜎 the standard deviation). The system level objective is to minimize a function of the GLOW.  
The uncertainty measure for the constraints 𝒈Z(∙)  is the probability measure ℙ[∙] . The required feedback 
couplings for the 2nd stage design are 𝒚_O = ℎ�_, 𝑣�_

�
 which are  the separation altitude and velocity between the 

1st and 2nd stages (Fig. 3). The design constraints for the 2nd stage are 𝒈𝟐 = 𝑃𝑒O, ℎ�O, 𝑁𝑓O
�

 which involve the 
avoidance of the breakaway of the jet in the divergent skirt (𝑃𝑒O), the apogee altitude (ℎ�O) and the maximal axial 
load factor (𝑁𝑓O). The same constraints are taken into account for the 1st stage expected for the apogee altitude. The 
proposed multi-level decoupled formulation and MDF under uncertainty are compared. 

 

Table 1: Design variables 
Design variables Symbol Min Max 

1st stage diameter (m) 𝐷_ 0.5 1.0 
1st stage propellant mass 

(kg) 𝑀𝑝_ 1000 3000 

1st stage nozzle expansion 
ratio 𝜀_ 1.0 20.0 

1st stage grain relative 
length (%) 𝑅𝑙_ 30 80 

1st stage  combustion depth 
(%) 𝑊𝑝_ 30 80 

2nd stage diameter (m) 𝐷O 0.5 1.0 
2nd stage propellant mass 

(kg) 𝑀𝑝O 2000 3000 

2nd stage nozzle expansion 
ratio 𝜀O 1.0 20.0 

2nd stage grain relative 
length (%) 𝑅𝑙O 30 80 

Figure 3: Design Structure Matrix of the sounding rocket 2nd stage  combustion 
depth (%) 𝑊𝑝O 30 80 
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The design variables are resumed in Table 1. The uncertain variables taken into account are the 1st stage 
combustion regression rate coefficient 𝒩(3.99,0.05) in cm/s/MPa0.3 and the 2nd stage dry mass error 𝒩(0,50) in 
kg. The mission has to ensure that the payload reaches at least an altitude of 300km (with a probability of failure of 
3×10�O). MDF under uncertainty and MHOU formulations use CMC to propagate uncertainty, to estimate Ξ ∙ , 
ℙ[∙], and 𝑱FG(∙) based on a fixed set of 10�random samples. The FPI convergence criterion is set to a relative error of 
1%. Both system level optimizers are stopped when 5.6×10� evaluations of the disciplines is reached. 
 

Table 2: Sounding rocket problem results 
 MDF under uncertainty MHOU 

 Objective function  7.07 (t) 6.68 (t) 

Design variables [2850,0.75,4.4,69.4,66,  
2395.8,0.76,9.97,69.5,65.9]  � 

[2659.5,0.79,9.24,30.7,43.5,  
2287,0.75,17.4,41.0,63.9]� 

ℙ[h�O ≤ 300] apogee altitude 0.028 0.029 
 
 

  
 

Figure 4: Convergence curves on the 
feasible designs w.r.t. the number of 

discipline evaluations 

Figure 5: Sounding rocket altitude as a 
function of time for the optimal design - 

MHOU 

Figure 6: Optimal 
sounding rocket 

sizing and geometry 
 

 

   

   
Figure 7: Altitude (blue) and velocity (pink) couplings in MDF and MHOU formulations + coupling error (green) 
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The discipline modeling (propulsion, sizing, aerodynamics and trajectory) is adapted from classical launch vehicle 
models at the early design phases [12, 13]. Gradient based optimizer (SQP) is used at the system level in both 
formulations. CMA-ES optimization algorithm [14] is used at the subsystem level for MHOU formulation. The 
two problems start from the same feasible baseline to be optimized.  The results of the sounding rocket problem are 
resumed in Table 2. MHOU presents better characteristic in terms of quality of objective function (6.68t) than to 
MDF (7.07t) for a fixed discipline evaluation budget (Fig. 4). Both MDF and MHOU solutions satisfy the 
constraints especially the apogee altitude of 300km as illustrated in Figure 5. Only 2.9% of the trajectories do not 
reach the required altitude. Moreover, MHOU ensures interdisciplinary coupling satisfaction for the feedback 
couplings as illustrated by the comparison of the couplings for the optimal design found with MHOU with a 
coupled approach (MDA) and the decoupled approach (Fig. 7). The separation altitude and velocity distributions 
are similar with MDF (MDA on the optimal MHOU design) and MHOU (Fig. 7). Moreover, the interdisciplinary 
coupling error for the separation altitude and velocity are represented in Figure 7. The coupling error is always 
lower than 2% and concentrated between 0% and 0.5 %.  
 
7. Conclusions: This paper provides a new multi-level hierarchical UMDO formulation that ensures the system 
multidisciplinary feasibility for all the realizations of the uncertain variables. The proposed formulation is based 
on the iterative construction of surrogate models (PCE) of the functional coupling relations. The PCE coefficients 
are handled by the system level optimizer and subsystem optimizers only handle local design variables. Numerical 
comparisons between MDF and the proposed formulation have been performed on the design of a sounding rocket 
highlighting the efficiency of MHOU in this test case. Additional research effort is needed to incorporate mixed 
aleatory and epistemic uncertainties in UMDO. 
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