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1. Abstract  

Topology optimization is becoming an integral part of the design process in various industrial fields in order to 

keep up with the continuous drive to increase productivity and efficiency. In the field of machine tools, the 

dynamic behavior of a machine tool’s structure is largely responsible for its overall performance. Thus, topology 

optimization methods targeting the optimization of Eigen frequencies are often used in industrial practice. 

A machine tool’s structural frequency response (e.g. to external excitation during cutting processes) is also 

dependent on its damping properties. Therefore, the dynamic behavior of machine tools can be significantly 

influenced by utilizing one or more vibration suppression systems like tuned mass dampers (hereinafter called 

TMDs) to target specific vibrations. Although TMDs are often used to solve problems during operation, they are in 

some cases utilized during the engineering phase, becoming an integral part of the machine design. 

By combining both optimal utilization of vibration suppression systems and topology optimization within a 

structural optimization framework, potential synergetic effects of both approaches can be utilized. 

In this paper, the recently started development of such an optimization framework including the automatic optimal 

positioning and analytic tuning of multi-mass dampers (hereinafter called MMDs) is described. The advantages of 

MMDs include robustness and easy implementation, as demonstrated by initial simulative results presented in this 

paper. The described framework in development addresses issues like manufacturing constraints for the topology 

optimization and restrictions on the MMDs physical properties. The paper concludes with a brief outlook on the 

consideration of constraints for additive manufacturing and the volumetric distribution of multiple MMDs 

embedded inside those structures. 
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3. Introduction 

The application of topology optimization methods for structural dynamics problems has been discussed for many 

years. The optimization of dynamic behavior is a very general term. From a mechanical engineering standpoint, 

one can distinguish between indirect and direct methods. Indirect methods include those trying to maximize 

certain Eigen frequencies [1], achieve target (or shift specific) Eigen frequencies [2] or create a so-called band-gap 

behavior by maximizing the distance between distinct Eigen frequencies [3]. Many indirect methods include Eigen 

frequencies as optimization constraints rather than objective functions, e.g. [4, 5], a practice often applied in 

commercial products as well (see [6]). These methods can be called indirect, because the frequency-tuning is 

essentially achieved by optimizing the stiffness-to-mass ratio of a structure for certain Eigen frequencies and 

associated Eigen modes. The resulting dynamic behavior is indirectly affected by this optimization. 

Direct methods on the other hand aim at influencing the dynamic behavior more directly, e.g. by synthesizing 

specific mode shapes [7] or minimizing the (maximum) frequency response at specific points or regions within the 

structure [8]. The latter is especially interesting in the field of machine tools, where the dynamic behavior at the 

tool center point (TCP) is often the most important point of interest. 

The dynamic behavior of machine tools, and whether specific Eigen modes are potentially critical during 

operation, is in no small part also dependent on the damping properties of the structural parts and coupling 

components connecting them [9]. However, the topology optimization of the damping behavior of structural, 

load-bearing components has not been the focus of research. Instead, problems like an optimal material 

distribution within damping layers [10], especially regarding acoustics important in the automotive industry [11], 

were investigated. 

Besides structural optimization techniques, a classic approach to reduce an existing machine’s (or any vibrating 

structure’s) peak response amplitude in one of its Eigen frequencies is to attach a vibration suppression system to 

it. Strategically positioned and tuned to absorb one response peak, the kinetic energy is either dissipated by 

different means of damping behavior or counteracted by opposing forces. Expensive, high-maintenance active 

systems (actors) can adapt to varying frequencies, passive systems like TMDs are only effective within a narrow 

frequency range. [9] 



 

 

2 

An extensive amount of research has been conducted into different types of TMDs. Regular ones consist of a single 

absorber mass connected to the main system with a specific attachment stiffness and optimal damping, see Eq.(1), 

Eq.(2). Many different approaches have emerged in the literature, using multiple degrees of freedom (DOF) for 

attachment [12] or distributing the damper mass over multiple masses [13-15]. They have in common, that the 

optimal tuning is usually achieved by using numeric optimization methods and significantly simplifying the 

system they are attached to. Also, available research is dominated by its application to buildings exposed to ground 

vibrations due to seismic activity, e.g. [16]. 

There is noticeably less research on the automatic optimum placement of such auxiliary systems, although [17] 

proposed a genetic algorithm approach to position damper systems (again in the field of civil engineering) across 

different floors of high-rise buildings, for example. Industrial applications of those optimized TMD systems in 

general and applications to machine tools in particular are rare, e.g. [18]. 

One aspect which all passive vibration suppression systems have in common is that their effectiveness depends on 

their mass in relation to the mass of the system they are attached to. By reducing the main system’s mass, e.g. by 

topology optimization, the auxiliary system can be smaller. Yet, no research on a combined approach of topology 

optimization and integrated optimal tuning of TMD systems is available. 

This lead to the research project presented in this paper, where a concept of integrating optimally tuned systems of 

MMDs into a topology optimization framework targeting the direct optimization of structural dynamics of 

machine tools is proposed. The general concept is summarized in Fig. 1. Either due to problems during operation 

or requirements during the design phase, the goal of optimizing structural dynamics can either be solved by 

damping critical vibrations or by optimizing one or more structural components w.r.t. static and especially 

dynamic considerations. The challenges and potentials of combining both approaches into an optimization 

framework are described in the following paragraphs. The motivational application example on the right side of 

the figure will be described in detail in the outlook of this paper. 
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Figure 1: Schematic summary of the combined topology optimization and damping method concept 

 

4. Analytically tuned MMDs 

As mentioned above, the methods for optimal design of multi-mass or multi-DOF dampers presented in the 

literature focus on numerical optimization methods to optimize parameters like the number of masses, the mass 

fraction and the distribution of masses and attachment frequencies. Due to the computational effort of the 

combined optimization task, described in detail below, a fast analytic approach would be preferable. 

Thus, the approach presented in this paper relies on analytic tuning methods of classical TMDs and applies them to 

a multi-stage design to broaden the effective frequency range and increase the robustness of the design. 

 

4.1. Analytic tuning of multi-stage MMD units 

When designing a regular TMD, the main system’s dynamic behavior in the targeted Eigen mode is simplified to 

that of a single mass oscillator with an equivalent static stiffness and kinetic mass M. After defining the absorber 

mass m, the damper mass ratio µ = m/M is used throughout the optimal tuning. Using DEN HARTOGS [19] equations 
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to derive the optimal frequency ratio fopt between the absorber’s and the system’s Eigen frequency (optimal 

detuning), the necessary attachment stiffness kTMD.opt can be calculated: 
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A TMDs performance relies on its optimal damping, which can be determined using BROCKS [20] formula: 
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Depending on the system’s mass and the target frequency, it can be difficult to achieve the target damping value in 

practice, and deviations in cTMD,opt result in significantly reduced performance [16]. It is shown in several 

publications (e.g. [13,21]) that distributed mass dampers offer comparable performance to a single TMD with less 

damping, while being more robust to deviations in tuning (stiffness, damping or mass). Thus, distributing the 

single TMD mass represents the first design aspect of the MMD presented here as well (Fig. 2, left). 

By attaching an absorber mass to a system, its resonance peak is split into two new resonance peaks. Neglecting 

any damping effects, the frequency spacing of those peaks can be calculated using Eq.(3) derived by [19]. The two 

solutions to this quadratic equation only depend on the mass fraction µ, where higher mass fractions increase the 

peak spreading effect of an absorber. A graphical representation of this formula is shown in Fig. 3 (top, middle). 
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Obviously, the distribution of the single TMD mass in an MMD reduces the peak spreading due to the decreasing 

individual mass fractions, narrowing the effective frequency range of a MMD system. To increase this frequency 

range, a multi-stage design is proposed, which calculates the newly created resonance peaks from the previous 

stage of absorbers using Eq.(3), and tunes additional masses to the lower- and uppermost peaks ωi,l and ωi,u, 

respectively. This multi-stage design (as illustrated in Fig. 2, right) iteratively increases the effective frequency 

range of the proposed MMD system. 
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Figure 2: Design aspects of tuned multi-mass damper units 

 

All MMD results presented in this paper are obtained from a FE simulation of a clamped, thick cantilever plate 

(steel, 20x100x500mm), where two MMDs are attached at different positions along the central axis and tuned to 

the 1
st
 and 2

nd
 bending mode (normal to the plate). The MMD attachment positions (as shown in Fig. 3, right) are 

chosen such that the mutual interference of both MMDs is low. The MMDs are idealized as point masses, 

individually connected via uniaxial springs/dashpots to the plate. A cantilever plate is chosen in order to validate 

the simulations on a test bench at a later stage. Also, the position of clamping can be moved along the longitudinal 

axis of the plate to detune the system and analyze the robustness of the MMD design. 

An example of the multi-stage design and the spreading effect is demonstrated in Fig. 3 (bottom), where the overall 

damping of the MMD is kept constant and deliberately at a low level, such that the individual resonances can be 

clearly distinguished. Note that with an increase in stages, the maximum receptance is reduced, despite the 

constant damping. 
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Figure 3: Utilizing the resonance peak spreading effect of adding absorbers to construct multi-stage MMDs 

 

4.3. Robustness and manufacturing considerations 

The premise of the presented MMD design is robustness both towards changing frequencies of the main system 

and towards variations and limitations in the stiffness and damping properties of available attachment devices for 

the individual dampers. Possible attachment devices include rubber attachment buffers in different configurations 

and shore hardness classes of rubber mixtures. An example of those buffers is shown in Fig. 4 (top, right). 
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Figure 4: Effects of variations in the individual attachment stiffnesses on the MMD performance 

 

Due to manufacturing and material property fluctuations, the stiffness of a single type of buffer and shore hardness 

can vary by more than 10%, the damping coefficients can vary even more. To consider those variations, the 

optimally tuned attachment stiffnesses, damping coefficients and masses of each individual damper are optionally 

subjected to a semi-truncated standard deviation to guarantee positive values, see Fig. 4 (top, left). Initial 

simulations for single- and multi-stage MMDs show a very beneficial effect of even large deviations, as can be 

seen in the example in Fig. 4 (bottom, left). Again, the sum total of viscous damping within each MMD 
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(0.1 Ns/mm) is very low compared to the optimum damping of a regular TMD with equal mass 

(cTMD,opt = 0.7262 Ns/mm for the 2
nd

 bending mode), obtainable from Eq.(2). 

In contrast to the analytic tuning of regular TMDs, whose effectiveness relies heavily on optimal damping, the 

optimal tuning procedure presented here allows for the consideration of damping coefficients of available 

attachment devices. Available attachment stiffnesses are taken into account by scaling the number of masses per 

stage, thus changing the individual damper masses to achieve the same tuning frequency with different stiffnesses. 

Detailed results of this MMD design and practical validations on a test stand will be presented at a later stage. 

 

4.3. Optimal positioning criteria 

Any TMD needs to be in a position undergoing significant amplitudes within the targeted mode shape to be able to 

dissipate kinetic energy. Finding an optimal MMD position within a structure for a single targeted mode shape is 

straightforward. The nodal displacements of the considered mode shape, extracted from a FE modal analysis, yield 

optimal positions with high amplitudes. As soon as multiple MMDs are to be used to target multiple frequencies 

and mode shapes, the optimal positioning turns into a minimization problem, where optimal positions have high 

amplitudes at positions with low amplitudes in target modes of other MMDs. Even for a simple cantilever plate 

like the one used for demonstration in this paper, finding two optimal positions for both targeted Eigen modes 

cannot be realized without any mutual interference, see Fig.3 (top, right). The optimal positioning subproblem is 

further constrained by the necessity to have enough surface area at certain positions within the structure to attach 

MMDs to or to have enough local volume to integrate the MMDs into (see volumetric distribution in Ch. 6). Those 

constraints are imposed onto the positioning problem by the changing topology of the structure. 

 

5. Topology optimization framework 

5.1 Computational effort and technical challenges 

The optimization framework under development is to be used for the optimization of real structural components of 

entire machine tools, which are often very large and complex structures containing a high number of DOFs. The 

FE dynamics analyses needed to calculate the system responses require a lot of computational effort. A modal 

analysis and subsequent frequency response calculation is necessary to determine the mode shapes and Eigen 

frequencies for tuning the MMDs and the frequency response behavior for the topology optimization module. 

Additionally, the tracking of Eigen modes (by using the MAC criterion, see e.g. [22]) will be considered, since 

mode shifting is likely to occur during the optimization process. To cope with the huge computational effort, a 

hybrid topology optimization scheme will be implemented to reduce the overall size of the system of equations by 

fully deleting Finite Elements in regular intervals (and adding some in critical areas, BESO-type approach). In 

between those reduction intervals, a localized topology optimization problem will be solved. 

By adding, moving and retuning MMDs to and in the structure during the optimization process, the dynamic 

behavior of the structure is changed. The topology optimization in turn changes the dynamic behavior of the 

system, detuning the MMDs. A suitable coupling scheme has to be developed, while the achievable stability and 

convergence of the combined process and the topology optimization procedure in particular are critical but 

unknown. Due to this added complexity, the optimization core is kept modular to investigate the performance and 

suitability of different topology optimization approaches and coupling schemes (both implicit and explicit). 

 

5.2 Applicability to real structures and manufacturing considerations 

Structural components of machine tools are usually designed as welded steel or cast iron constructions. Welded 

steel constructions are comprised of mostly planar plates with relatively low wall thicknesses and are inherently 

ill-suited to be target designs of topology optimization methods. Thus, manufacturing constraints focus on 

improving the castability of the design proposals. A simple casting constraint would be to forbid the formation of 

undercuts in the designs w.r.t. a single cast removal direction. The framework in development operates on FE 

models discretized with a uniform Cartesian grid of hexahedra, allowing the definition of a casting direction along 

one of three principal axes of said grid. By allowing only the removal of surface material on the top and bottom 

projection of the structure w.r.t. the casting direction, undercuts are avoided, as proposed in [23], for example. 

 

6. Outlook on additive manufacturing and the volumetric distribution of MMDs 

The full potential of the combined optimization method can be exploited using additive manufacturing and 

distributing a large number of micro-dampers volumetrically within a load-bearing lightweight structure. A 

motivational, practical application is shown in Fig. 1 (top, right). Portal milling machines exhibit a dynamically 

challenging design component, namely the z-slide providing vertical movement of the main spindle. Typical mode 

shapes of this type of machine design include horizontal bending and sliding of said z-slide in the z-axis guides. 

Depending on the z-slide’s vertical position, the Eigen frequencies change significantly, and surface area for the 

attachment of external TMDs is very limited. Volumetrically distributed MMDs which are tuned towards those 

typical Eigen modes and provide broadband performance due to their multi-stage design do not suffer from the 
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same spatial and frequency-related restrictions. 

As mentioned above, the lighter the structure, the less damper mass is needed for vibration suppression. Also, the 

necessary individual damping associated with each mass increases with the number of dampers. By using additive 

manufacturing, it is conceivable that hundreds or thousands of masses can be integrated into a load-bearing truss 

structure derived by topology optimization and connected to it by parametrizable beams of material. Damping can 

be introduced into the masses for example by designing them as hollow spheres and retaining unmolten material 

within. These aspects will be the focus of research at a later stage of the ongoing framework development. 
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