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1. Abstract:

Phononic band gap crystals, which could prohibit the propagations of elastic waves in certain frequency, are
consisted of periodically distributed inclusions embedded in a matrix with high contrast in mechanical
properties. In recent years, systematic design of phononic band gap crystals has attracted increasing attention
due to their wide applications such as sound insulation, waveguides, or acoustic wave filtering. Toward an
efficient and reliable optimization for phononic structures, we present a new topology optimization algorithm
based on bi-directional evolutionary structural optimization (BESO) method and finite element analysis to
maximize phononic band gaps. The optimization of maximizing the relative band gap size between two
appointed neighbour bands starts from a unit cell without any band gap and then gradually adjusts the
distribution of two materials in the following iteration steps based on the sensitivity analysis and BESO
algorithm until the convergence criterions are satisfied. Various patterns of optimal phononic structures for both
out-of-plane shear waves and are in-plane mixed waves presented. Numerical results show that the proposed
algorithm is very effective and efficient.
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3. Introduction

Sparkled by the remarkable work on the photonic crystals (PtCs) with periodic constructions of two dielectrics
composite materials, which offer control over the propagation of electromagnetic waves, the study of phononic
band gap crystals was first carried out by Kushwaha in 1993 [1, 2]. In analogy to photonic crystals, phononic
crystals (PnCs), which prohibit the propagation of mechanical waves in certain range of frequencies, are
generally composed of periodically distributed inclusions embedded in a matrix with high contrast in elastic
properties. Such novel property makes them desirable for a variety of applications, for instance, sound insulation,
waveguides, acoustic wave filtering, negative refraction, shock isolations well as acoustic cloaking [3]. Thus,
photonic/phononic crystals have attracted considerable interest during past few decades.

When PnCs are designed for sound insulation or shock isolation, usually it is best to have the band gap as wide
as possible. Therefore, how to obtain the optimal band gap structure is of great interest here. A promising mean
to achieve this goal is to utilize the topology optimization method for systematic and scientific approach of
designing phononic structures. Topology optimization of phononic band gap structures was first performed by
Sigmund and Jensen (2003) [4], using finite element method combined with the method of moving asymptotes
(MMA) to maximize the band-gap sizes. This pioneering work only presented a few examples and lacked the
analysis of coupled problem of in-plane and out-of-plane waves. Later a genetic algorithm (GA) in conjunction
with finite element method was proposed for optimizing a two-dimensional phononic crystal for out-of-plane
waves (Gazonas et. al) [5]. Hussein et al. [6, 7] used GA to conduct a series of optimization of both one-
dimensional and two-dimensional phononic crystals. Rupp et al. [8] developed a gradient-based topology
optimization to design two and three-dimensional phononic wave filters, including surface waveguides. Dong et
al.[9] reported a more detailed work on topology optimization of two-dimensional phononic crystals using a
two-stage GA and FEM for both out-of-plane waves and in-plane waves with and without volume constraint.
Liu et al. [10] used a two-stage GA in conjunction with fast plane wave expansion method to optimize the band
gap width of phononic crystals for in-plane coupled mode, out-of-plane acoustic mode and mixed mode. It
should be noted that aforementioned algorithms often cost significant computations. Taking GA in combination
with FEM for example, it usually would take more than several hundreds of steps before the optimal design was
achieved [9, 10]. Though parallel computation could reduce the computational cost more easily than before, it is
still lack of efficiencies.

Toward an efficient and reliable optimization for phononic structures, in this paper we propose a new topology
optimization algorithm based on the bi-directional evolutionary structural optimization (BESO) method and
finite element analysis to maximize phononic band gaps. The rest of the paper is organized as follows:
governing equations and BESO optimization approach to optimize the band gap width between two adjacent
bands are presented in section 4. In section 5, various patterns of optimal phononic band gap structures are
presented for both out-of-plane shear waves and in-plane mixed waves. This is followed by conclusions.



4. Formulations

4.1 Analysis of phononic crystals

The propagation of mechanical waves in an elastic inhomogeneous medium is governed by
pou=V[A7)+2u(r)(Vu) -V x[u(r)V xu] (1)

Where A and p are the Lame’s coefficients; p is the material density; u={uy,uy,u,} is the displacement vector.

In this paper we only consider the elastic waves that propagate in the x-y plane, i.e. the wave field are

independent of z so that du /dz = 0. Then Eq.(1) can be split into two coupled in-plane equations, which

govern the longitudinal and transverse modes, and an out-of-plane equation that governs acoustic mode:
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where r=(x,y) denotes the position vector.
According to the Floquet-Bloch wave theory, the displacement vector can represented as the product of a
periodic function and an exponential factor as:

u(r,k)=u, (r)ei(k") %)
where uy(r) is a periodic function of r with the same periodicity as the structure; k=(ky,k,) is the Bloch wave
vector.
Inserting Eq.(5) into either Eq.(2), Eq.(3) or Eq.(4), with A(r)=A(X,y), w(r)=p(x,y) and p(r)=p(x,y); the elastic
waves governing equations can be converted to eigenvalue problems within a unit cell. After discretized by
finite element method (FEM), these equations can be written as:

(K(k)-a’M)u=0 ©)
where u=u,; K and M are stiffness matrix and mass matrix respectively. Due to the periodicity of the unit cell,

only the wave vectors on the boundary of irreducible Brillouin zone are considered for the calculation of the
band diagram.

4.2 Topology optimization problem
Our goal for the optimization of phononic crystals here is to maximize the relative band gap between two
adjacent bands (referred as band n and band n+1). The objective function can be stated as follows:

Max: f(x6)= Zm%na)n” (k)—maxa)n (k) %)
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where x. is the design variable which describes the material distribution in the unit cell. Ve and V are the
elemental volume and the prescribed volume of the unit cell, respectively. It should be noted that the frequency
is the function of the wave vector.

It is assumed that the phononic crystal is composed of two base materials. We use the linear material
interpolation scheme, which has been applied successfully to the design of phononic crystals [4] as

p(‘xe)=(1_xe)pl+'xep2 (8)
A ) =(1-x,) 4 + x4, ©)
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where subscripts ‘1’ and ‘2’ represent the matrix material and the inclusion material respectively. In the
traditional BESO method [11-14], the discrete design variable is set x.=0 or 1 only. However, numerical
simulation shows that the optimization process of phononic crystals is very sensitive to the change of design
variable. Thus, in this paper the variation of the design variable in each iteration step is limited to be Ax.=0.1.

4.3 Sensitivity Analysis and BESO algorithm

For a given wave vector k and assuming that eigenvectors are normalized to the global mass matrix, the
sensitivities of eigenfrequencies ®,(k) with respect to a change in an element design variable can be computed
as:



awn(k)=1u(k)T(<9K_wgaM)u<k)n (11)
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Thus, the sensitivity of the objective function can be written as:
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Originally proposed by Xie and Steven [15] in early 1990s, the essential idea of evolutionary structural
optimization (ESO) method is by gradually deleting low efficient materials, remain topology of the structure
evolves to an optimal design. Its later version, BESO allows adding materials while removing insufficient ones
[16, 17]. Topology optimization of phononic band gap structures starts from a simple unit cell without any band
gap. Then based on the sensitivity analysis and BESO algorithm, it will gradually modify the distribution of two
materials in the following iteration steps by changing the value of the design variable of every element until the
convergence criterions are satisfied. A filter scheme shown below is adopted to avoid checkerboard and mesh-

dependency problems [11]:
M
& = Ej=1w(’9i)aj (13)
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where r; denotes the distance between the centre of the element i and node j ; w(r;) is weight factor given as
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with r,,;, as the radius of the filter.

5Numerical Results

In this example, our goal is to maximize the relative band gap between two neighbor bands of a 2D square unit
cell for a prescribed material volume fraction. A solid-solid phononic structure design is considered with Epoxy
as the matrix and Au as the inclusion material. The material parameters are: pepoxy=1200 kg/m3, Aepoxy=0.38 GPa,
Hepoxy=1.61 GPa, pa,=19500 kg/m’, A5,=65.44 GPa and p,,~29.94 GPa.

BESO starts from an initial design without band gap and gradually decreases the total volume of the unit cell
using an evolutionary rate ER=2%. A mesh-independency filter is used to avoid tiny structures and the radius of
the filter is 1/50 of the length of the lattice’s diagonal line.

5.1 Out-of-Plane waves (Acoustic modes)

The optimal unit cells and the corresponding band diagrams for the first to eighth band gaps of the out-of-plane
waves which propagate in the Au-Epoxy composite are demonstrated in figure 1 with the volume constraint of
V=0.38. The optimized topologies show the distribution of 3x3 array of unit cells (the representative unit cell is
shown within the red dashed box), in which black represents Au and white represents Epoxy. The optimal
designs are very similar to those reported by Dong et al. [9] for the first and fifth band gap structures. It
demonstrates the effectiveness of the proposed optimization method. It is also noted that the complexity of the
optimal topologies increases when the appointed bands grow higher.
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Figure 1: Optimized band gap structures and corresponding band diagrams from the first to eighth band for the
out-of-plane mode .The black and white colours represent Au and Epoxy, respectively.

Figure 2 illustrates the evolution history of the first band gap optimization process for the out-of-plane mode. As
shown in the figure, there is no initial gap between the first and second bands. The band gap occurs after several

iterations and then the total volume of the unit cell gradually increases as the volume fraction decreases to the
predefined value. Finally, the optimized gap size stably achieves its maximum value when the volume is kept to
be the constraint value. It can also be concluded from figure 2 that the proposed algorithm is of high efficiency
since the optimization process would converge in 70 iteration steps, which is much faster than present

optimization methods, for instance GA would take nearly 1000 iterations [9].
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Figure 2: Evolution histories of the first band gap size and volume fraction.

5.2 In Plane waves (Coupled modes)
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Figure 3: Optimized phononic band gap structures and corresponding band diagrams for third and fifth band

gaps of in-plane mode.




The proposed optimization method can also applied to the in-plane waves of phononic crystals. Using the same
parameters for the previous examples, the optimization results for the third and fifth band gaps of the in-plane
mode are shown in the figure 3. The volume constraint is also set to be V=0.38. The optimized topology for the
third band gap is analogous to the first band gap structure of the out-of-plane mode. The optimized topology for
the fifth band gaps looks like a hollow diamond, which also has a small band gap between the third and fourth
bands. It is observed that band gap between the third and fourth band can be easily obtained when optimizing
for other band gaps.

6. Conclusions

This paper proposes a new optimization algorithm based on BESO in combination with FEM for the design of
phononic band gap structures and systematically investigates the topology optimization of 2D phononic band
gap crystals for both the out-of-plane and in-plane wave modes. Numerical results show that optimized
topologies for various band gaps has been successfully achieved. The optimized band gap sizes well
demonstrate the effectiveness of the proposed optimization algorithm. Moreover, the optimization method
proposed in this paper is also efficient as the optimization usually converges within about 100 iterations.
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