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Abstract

Engineering design often involves simultaneous minintizahaximization of multiple conflicting objectives. The
optimum solution of such problems comprises a set of desigmesenting best-tradeoff among objective values,
known as Pareto optimal front (POF). It is well known that &xésting multi-objective optimization algorithms can
find POF for 2-3 objective problems successfully, but theifgrmance deteriorates significantly for problems with
4 or more objectives, which are termed as “many-objectivptimization problems. There has been a significant
recent interest in solving them. In this paper, we preseneeothposition based approach for solving many-
objective optimization problems. Further, we demonstthg this improved capability can be exploited to solve
various other intractable classes of problems. Two suclhsda presented are robust design optimization and
“re-design” for robustness. In addition to the above, weaibustrate the benefits of multiobjective formulation
for a special class of problems, where an user is interestesblving single objective optimization problems with
different parameter values. We present numerical exanffdesvarious domains including mechanical, civil and
aerospace industry to demonstrate the approaches andsmoraling benefits.

1 Introduction

Optimization is an integral tool in engineering design uB®doushing the boundaries of performance subject to
several practical constraints. Multi-objective (MO) opization algorithms are required where more than one con-
flicting objectives are simultaneously being optimized, dgample, maximization of strength and minimization
of weight of structural components, minimization of tratiele and maximization of payload for space missions,
maximization of engine efficiency and minimization of enoiss etc. Optimum solutions of such problems is a
set of designs representing best trade-off among the @lgecknown as Pareto Optimal Front (POF). Population
based methods such as Evolutionary Algorithms (EAs) [1]ca@monly used to solve such problems, which
“evolve” a population of solutions (designs) through a gexsimilar to the Darwinian principle of natural selec-
tion. EAs simulate the evolution process through use of pratticalcrossoverand mutation(to generate new
designs from “fitter parents”yanking (to prioritize them based on performance) aeduction(to choose the de-
signs to be retained for next generation). It is now welllgighed in literature that the existing EAs can efficiently
solve MO problems with 2-3 objectives but their performadeéeriorates severely for problems with 4 or more
objectives [2]. Such problems are referred to as “Many-cje” (MaO) optimization problems.

The poor performance of such algorithms for MaO problemdtibated to the ranking procedure based on
Pareto-dominance. For MaO problems, most (or all) solstiarthe population beconmn-dominatedearly in
the search and hence there is no pressure to drive the s@utiovards convergence. To deal with this challenge,
a few different approaches have been reported in the literatSome studies have focused on modifying the
dominance relations [3] or adding a secondary ranking dpam Pareto dominance using various criteria such
as sub-vector dominance, fuzzy dominarceominance etc. [4]. These methods may often result in reditiee
diversity of solutions in POF in exchange for good conveogemlternatively, the solutions can be ranked using an
indicator such as hypervolume [5]. However, the calcufatbhypervolume itself is computationally expensive.
Interactive EAs [6, 7] have also been proposed, where aidacisaker is asked to provide inputs/choices of
preferred solutions during the search in an attempt to @elilesigns in areas of interest. However, such user
information may be hard to come by or at times misleading seabe of prior knowledge about the nature of
the POF. For certain problems, reduction of original set lgectives to a manageable number has also been
suggested [8]. Although each of these methods have theaméaiges and applicability, obtaining a well spread
and converged POF for MaO problems still remains a challehigehis regard decompositiorbased methods
[9, 10] have been most promising so far, which generate & sidt@rse reference directions in the objective space
and optimize linear combination of objectives along theésections to deliver diverse solutions on the POF.



It is to be noted that all the studies mentioned above have peesented in the context of determinis-
tic optimization,i.e., the original problem formulation itself had many objeesvand no uncertainties in vari-
ables/objectives are considered. However, certain otbefluliclasses of problems may also be modeled as MaO
problems. For example, when a robust optimum is soughtadsté deterministic optimum, the metrics for ro-
bustness could be added as additional objectives to thégpnpbesulting in an MaO problem. Similarly, one can
also consider the problem of re-design for robustness okestirey product as an MaO problem. However, such
extensions of many-objective optimization have only rélgdreen proposed by the authors [11].

In this paper, an enhanced Decomposition Based EvolutjoAlyorithm (DBEA) is presented for solving
MaO problems in Section 2. Thereafter, its applicationgl@raonstrated using three different classes of problems
— deterministic, robust and re-design in Section 3. An #althtl special case is also illustrated in Section 3.
Numerical experiments are presented on examples from aMthanical and aerospace engineering domain to
highlight the benefits of the proposed approach. A summatigeoivork is given in Section 4.

2 Decomposition based Evolutionary Algorithm (DBEA)

The proposed algorithm is referred to as Decomposition &selutionary Algorithm (DBEA). It generates a set
of uniform reference direction through systematic sangplifihe quality of solution a solution is measured by its
distance from an associated direction and the distanceitfeat point (in scaled objective space). While the first
version of the algorithm [10] used a steady state model stie®n continually improved and the DBEA presented
here uses generational model which is amenable to pazaliiein and has a number of enhancements over its first
version. The pseudo-code of DBEA is presented in Algorithend the details of its key components are described

below.
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while (i < Genpay) do
Create C offspring fromP' via recombination;
EvaluateC and compute Ideal poing'() and Nadir point )
Scale the individuals ofP'+C usingZ andz
Compute d; andd;, for all individuals inC+P'
Replace individuals inP' usingC
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Compute: Two measuresd; and d, are
computed for all feasible solutions. The

first measured; is the Euclidean distance between origin and the foot of threnal drawn from the solution
to the reference direction, while the second measiris the length of the normal. Mathematicallyy andd,

are computed ag; = w'f'(x)

d> = I (x) -

wTf'(x)w||, wherew is a unit vector along any given reference

direction. A value ofd; = 0 implies that the solutions are perfectly aligned alongrdtiired reference directions
ensuring good diversity, while a smaller valued@findicates superior convergence.

Assign: If all solutions in the population are infeasible, solusare randomly assigned to the reference directions.
Since the population size is equal to the number of referdineetions, every direction has an associated solution.
If the population has one or more feasible solutions, theilida set of solutions are randomly shuffled (to avoid
any bias). Each solution is assigned to a reference direftiiovhich itsd; is minimum. The assigned direction is
removed from the list of available reference directions fatible solutions are sequentially assigned following
the shuffled list. Subsequently, infeasible solutions anelomly assigned to the remaining directions.




Create: The process of offspring creation involves two stéjgs, identification of participating parents for recom-
bination and the recombination process itself. Two paréithg parents are recombined using simulated binary
crossover (SBX) and polynomial mutation (PM). The first pffag (out of two) is considered as a membeCof
Thus to generaté/ offspring solutionsW participating parents and their corresponding matingnesistneed to
be identified. The selection of participating parents amit torresponding mating partner depends on the state of
the population. If all the solutions in the parent populafiare infeasible, the participating parents are identified
via binary tournament, where their fithess measure is bas#ukir sum of constraint violation. If all the solutions
in the population are feasible, the first set of participaparents are the membershitself, while their partners
are identified using a roulette wheel selection. The usewdétte wheel induces a stochastic selection pressure to
prefer partners that are close to a reference directiomdmvtent there is a mix of feasible and infeasible solutions
in the population, mating partner selection for a feasibtividual follows the schemes described above. To iden-
tify the rest of participating parents and their partnens, following strategy is adopted. The infeasible solutions
in the population are first sorted based on their sum of caimétviolation values and assigned to the set of weight
directions (take note that these weight directions hadasifde solutions associated with them and this process
alters the previous assignment). Following that, binagyiaments are conducted among all individuals in the
population to identify the remaining participating pareand their mating partners. Such a process encourages the
recombination between feasible and infeasible solutions.
Replace: The aboveCreate process will result irC, i.e,, a set ofw offspring. Since the individuals i are
already assigned to reference directions, such a processt&sly looks through the list @ to identify potential
candidates for replacement. In the event there are infieastiutions inP, a sequential replacement scheme is
adopted, wherein a solution froBwith better fithess replaces the worst infeasible individtu&®. Such a process
will continue till all members of° become feasible. In the event all individualsRrare feasible, a sequential
replacement scheme is once again adopted. In such a pranésdijvidual fromC replaces a dominated individual
of P. In the event the offspring solution fails to dominate amyividual in P, the replacement is carried out based
on their fitness computed using themeasure (smallat, preferred). The process also adopts a single replacement
policy, wherein an offspring can only replace one indivicdofaP.

The constraint handling approach used in this work is basednaepsilon level comparison and has been
reported earlier in [10]. The process adaptively controlalowable constraint violation measure, which offers
the marginally infeasible solutions to be selected as oppts a feasibility first principle.

3 Numerical Experiments

In this section, numerical experiments are conducted ubkiegroposed DBEA on a humber of engineering prob-
lems. As mentioned previously, three different kind of geos are considered, namely deterministic, robust and
re-design problems; along with an additional special cabese experiments are discussed next. For each of the
experiments, the parameters chosen @&@ny,ax= 100,pc =1, pm=0.1, nc = 30, Nm = 20.

3.1 Deterministic optimization

For deterministic MaO optimization, two problems are cimpsehich are discussed below.

Thewater resource management (WRM) problem was proposed in [13] in the context of urban planaimg
has emerged from the environmental engineering domainpfidtdem has three design variables: local detention
storage capacity , maximum treatment rate and the maximlawadble overflow rate. The objective functions to
be minimized ard; = drainage network cosf;, = storage facility costfz = treatment facility costf4 = expected
flood damage cost, anf@ = expected economic loss due to flood.

Thegeneral aviation aircraft (GAA) is an example from aerospace engineering, first introdugeiropson
et al. [14]. The problem involves 9 design variables: cruise spasgect ratio, sweep angle, propeller diam-
eter, wing loading, engine activity factor, seat width| tangth/ diameter ratio and taper ratio and the aim is to
optimize 10 objectives: Minimizé; =takeoff noise f, =empty weight,f;3 =direct operating cosff, =ride rough-
ness,fs =fuel weight, fg =purchase pricef; =product family dissimilarity and maximizé& = the flight range,
fg =lift/drag ratio andfig =cruise speed.

Thirty independent runs are conducted on the above two @nudl Population sizes chosen for WRM and
GAA are 210 and 715, respectively. Two standard metrics seg @ior measuring the quality of non-dominated
set of solutions obtained by the algorithm, namidiypervolumeandinverse Generational Distance (IGDBoth
of these measures provide a quantification of overall cgarereand diversity of the solutions obtained and are
hence commonly used for benchmarking MO algorithms [15]ighlvalue of hypervolume and low value of IGD
indicates better quality of the POF obtained by an algorithm



The results are compared with a well established deconpoditised algorithm called MOEA/D (Multiob-
jective Evolutionary Algorithm Based on Decomposition), [ghown in Table 1. It is observed that the best, mean
and median metric values (both Hypervolume and IGD) acrfssi3s achieved using DBEA are better than those
obtained using MOEA/D. Furthermore, the standard dewiati¢std.) obtained using DBEA is also lower than
MOEA/D for all cases except Hypervolume for GAA, which refkeits consistency in obtaining the competitive
results. For the case of Hypervolume of GAA, the reason foEBB standard deviation being higher is that the
Hypervolume values themselves are significantly highem thase from MOEA/D. In terms of magnitude of Std.
relative to mean values, DBEA performs much better.

Table 1: Performance metrics values for deterministic fgmols across 30 runs

Water resource management
Algorithm Metric Best Mean Median Worst Std
DBEA | : 043913 | 043628 | 043613 | 0.43378| 0.00131
MOEA/D | YPENOUME | 4 35660 | 0.29864 | 0.29803 | 0.22559 | 0.03601
DBEA Gb 0.08324 | 0.09417 | 0.09084 | 0.11909 | 0.01038
MOEA/D 0.07773| 0.13413| 0.13386 | 0.18848 | 0.02925
General aviation aircr aft
Algorithm Metric Best Mean Median Worst Std
DBEA | : 0.03460 | 0.02583 | 0.02582 | 0.01647 | 0.00450
MOEA/D | YPENVOUME | 4 51011 | 0.00303 | 0.002722| 0.00094| 0.00180
DBEA Gb 028656 | 0.30018 | 0.30514 | 0.38737| 0.02019
MOEA/D 0.30685| 0.41841| 0.41088 | 0.51788 | 0.05346

3.2 Robust design optimization

In the previous section (and in most literature), the optation problems are considerddterministic i.e., it

is assumed that performance estimates are exact and eavialoles can be achieved to an arbitrary precision.
However, in practice, most engineering designs operaterunttertainties that may emerge from varying ambient
conditions, material imperfections, inaccuracies in gsed/simulations, manufacturing precision etc. This work
considers uncertainties in design variables only. Fortmaldmplementation, designs need to be robust, less
sensitive in the presence of uncertainties.

To obtain robust solutions, the deterministic problem sdede transformed to a robust formulation by using
expectedialues for performance and constraints instead of detéstitivalues. Two kinds of robustness measures
need to be considered under uncertainfigasibility robustnes¢the design should not become infeasible) and
performance robustnegthe performance should not deteriorate). They are queditifi terms okigmalevels, a
terminology used in industry to judge the reliability of @gs[11]. Most of the past studies have either considered
these measures asnstraintsrather thanobjectives or have only considered one of these robustness measures
instead of both. This has been partially motivated by lacgaafd techniques for solving MaO problems, because
even if the original problem has only 2-3 objectives, thenefulated robust problem will become a MaO problem.

Using the robustness as constraints requires one to setvibleof desired robustness level (saylo) before
optimization, which delivers only a partial solution set foe problems. Furthermore, it is not possible to predict
the robustness levels expected from the optimization esesvathout a priori knowledge about optimum solutions,
in which case the optimization may not return any soluti@sstliere may not exist any4designs). Only by con-
sidering the robustness measures as objectives can one alftél range of solutions with all possible trade-offs
among the performance objectives, feasibility robustiaessperformance robustness. Towards this goal, in this
paper, the deterministic problem is reformulated as an Miablpm as shown in Equation 1. This formulation is
referred to as Feasibility and Performance Robust (FPR)dtation. For illustration of the concept, a mechanical
design example from automotive industry is considered.next

Minimize: f/(X) = Hf )i =1,2,....M {expectegperformance objectived/= no. of objective$
Maximize: f{; 1(x) = Min(sigma, Rc) {feasibility robustness
Maximize: f{; ,(x) = Min(sigma,Ry) {performance robustness
Subject to:sigmay > 0 Q)
where: sigmg = Min(ugj(x)/agJ x)), ] = 1...K (no. of constraints)
sigma = Min(do,j/01,(x)), | = 1...M (no. of objectives)
0o,j,j =1...M are allowable performance variations in each objective

4



Vehicle Crash worthiness Optimization Problem (VCOP): VCOP has 20
been studied in various works including Sanhal. [16]. A modified bi- 19
objective formulation of the problem is studied in this payéich seeks to "
maximize the post-impact energy absorptior) 6f the vehicle structure and =
aims to minimize the structural weigh¥If), subject to the constraint on peak <
decelerationd). The calculations fo, M anda are done as suggested in *
[16]. A higher energy absorption lowers the risk to the o@up of the car. .
However, increase in energy absorption often leads to uteslancrease in Hos a0 g o w
the structural weight. To limit impact severity, a consitadbn maximum o
deceleration is imposed in this formulation which is asstiieebe 40 g (g
=9.81 m/$). Part thicknesses of three key members — inner rail, oater
and the cradle rails — of the vehicle front end structure Hmen chosen as
design variables for the crash worthiness optimizatiorblgm. For each
variable, the uncertainty is assumed to follow a Gaussiatmilliition with
o = 0.05. For each objective, maximum allowaldg is set as 2.1. The
results obtained using DBEA on the problem are shown in Eidurlt can
be clearly seen that the delivered set of designs span a ddrsjggma levels achievable, between 0 amd @his
gives the user a choice to select the design which is mosttseitor the application.

15|

Figure 1: Robust solutions ob-
fained for vcopP using DBEA.
Here, Sigma is overallj.e., both
feasibility and performance robust-
ness achieve the indicated level

3.3 Re-design for robustness

Next, the applicability of presented DBEA

is considered for “re-design for robustness (RDR)".
RDR is an endeavor to improve the robustness
of anexistingdesign by doing minimal changes
to it. This need could arise, for example, in 5,
case operating conditions of the product haveg
changed due to unforeseen circumstances. Irg,
such situations, instead of discarding all in- & P
ventory of components for the product and re- | )
designing it from scratch, it would be of great °

value to investigate whether only a few compo- (a) Sigma levels achieved (b) Objective values (Weight)
nents could be replaced for making the prod-

uct robust. In order to solve this problem, apaftigure 2: Solutions obtained for FPRR formulation of CSIP us
from the objectives considered in previous suljng DBEA.

section, one more objectivig; 3, is added for

minimization, which is the number of components differenti the base design. This formulation is referred to
as FPRR formulation (FPR for Re-design), and cont®ns 3 objectives, wher#l is the number of objectives in
the deterministic formulation. To evaluate the objectfyg 3, a binary string is maintained in which 0 indicates
the variable value is same as base design, whereas 1 irglitatifferent. This binary string is also evolved along
with the variable vectors. For illustration of the concepitmechanical design example from automotive industry is
considered next where the objective is to reduce the weigdntar subject to constraints on satisfaction of several
safety criteria in the event of side impact [17].

Car Sidelmpact Problem (CSIP): In CSIP, the uncertainties associated with 7 (out of 11)akdeis are modeled
as Gaussian distribution with, =0.0408i =1,2...7, andot g is set as 2.5. The base design is taken from [18] as
{1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.345,0.192}0waith a weight of 29.05 units; whereas the deterministiéroptn for

the problem is reported to be 23.59. The base design is §ctodasible violating two of the constraints (lower
rib deflection and pubic force criteria) marginally. Theuks obtained using DBEA on the FPRR formulation of
CSIP are shown in Figure 2. It can be seen that by merely chgrgvariables out of 7, one can achieyeto 60
designs, at the cost of corresponding weight values goirtg 88.2 units. As the number of changed components
increase, the same can be achieved with lower compromisesigit values.
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3.4 Special class of single objective optimization problemswith varying parameters

Lastly, we consider a special case where the original prolgentains only single objective (SO), but this neces-
sitates it being solved for several parameter settingsrdiogpto the specific design case. Instead, it can be solved
as multi-objective problem to get entire range of solutiforsall parameter settings in one run. This is illustrated



using a reinforced beam design example.
Thereinforced concrete beam design problem (RCB) has been studied as a constrained, single objective opti-
mization problem in [19]. The problem was also solved foiaas values of a parametag (minimum allowable
width)[19].

Instead of independent runs of SO optimization with difféq@arameter values,

we reformulate the problem and solve it as a bi-objectivingpation problem,  os
i.e, minimize —ag (minimum allowable width) and minimize total cost. The os
results using DBEA for a single run are presented in Figuia $drious values
of the minimum allowable width parameter. The values aregie@ment with
those reported in [19] for minimum allowable width of 30. Wéhihost studies
focus on the ability of MO formulations to deliver a set ofdeaoff solutions for
problems involving conflicting set of objectives, the pipie presented here can

be exploited for problems such as above to deliver soluspasning the region  °4% M};n R I S
of interest (different parameter values) when objectivesat conflicting. !

0.48

o
0.46 .8
B

Cosl(fz)

0.42] @0

Figure 3: Optimal designs for
4  Summary RCB problem

In this paper, we have introduced an improved generatiarat of a decom-

position based evolutionary algorithm for the solution pfimization problems

involving many objectives. Apart from its ability to efficidy solve determin-

istic MaO problems, we have highlighted its extended uséviorother important class of problems i.e. robust
optimization and re-design for robustness. Numerical gptamhave been selected from various domains (me-
chanical, civil and aerospace) to highlight the benefitsroppsed approach.
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