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Abstract

Engineering design often involves simultaneous minimization/maximization of multiple conflicting objectives. The
optimum solution of such problems comprises a set of designsrepresenting best-tradeoff among objective values,
known as Pareto optimal front (POF). It is well known that theexisting multi-objective optimization algorithms can
find POF for 2-3 objective problems successfully, but their performance deteriorates significantly for problems with
4 or more objectives, which are termed as “many-objective” optimization problems. There has been a significant
recent interest in solving them. In this paper, we present a decomposition based approach for solving many-
objective optimization problems. Further, we demonstratethat this improved capability can be exploited to solve
various other intractable classes of problems. Two such classes presented are robust design optimization and
“re-design” for robustness. In addition to the above, we also illustrate the benefits of multiobjective formulation
for a special class of problems, where an user is interested in solving single objective optimization problems with
different parameter values. We present numerical examplesfrom various domains including mechanical, civil and
aerospace industry to demonstrate the approaches and corresponding benefits.

1 Introduction

Optimization is an integral tool in engineering design usedfor pushing the boundaries of performance subject to
several practical constraints. Multi-objective (MO) optimization algorithms are required where more than one con-
flicting objectives are simultaneously being optimized, for example, maximization of strength and minimization
of weight of structural components, minimization of traveltime and maximization of payload for space missions,
maximization of engine efficiency and minimization of emissons etc. Optimum solutions of such problems is a
set of designs representing best trade-off among the objectives, known as Pareto Optimal Front (POF). Population
based methods such as Evolutionary Algorithms (EAs) [1] arecommonly used to solve such problems, which
“evolve” a population of solutions (designs) through a process similar to the Darwinian principle of natural selec-
tion. EAs simulate the evolution process through use of mathematicalcrossoverandmutation(to generate new
designs from “fitter parents”),ranking(to prioritize them based on performance) andreduction(to choose the de-
signs to be retained for next generation). It is now well established in literature that the existing EAs can efficiently
solve MO problems with 2-3 objectives but their performancedeteriorates severely for problems with 4 or more
objectives [2]. Such problems are referred to as “Many-objective” (MaO) optimization problems.

The poor performance of such algorithms for MaO problems is attributed to the ranking procedure based on
Pareto-dominance. For MaO problems, most (or all) solutions in the population becomenon-dominatedearly in
the search and hence there is no pressure to drive the solutions towards convergence. To deal with this challenge,
a few different approaches have been reported in the literature. Some studies have focused on modifying the
dominance relations [3] or adding a secondary ranking apartfrom Pareto dominance using various criteria such
as sub-vector dominance, fuzzy dominance,ε-dominance etc. [4]. These methods may often result in reduced the
diversity of solutions in POF in exchange for good convergence. Alternatively, the solutions can be ranked using an
indicator such as hypervolume [5]. However, the calculation of hypervolume itself is computationally expensive.
Interactive EAs [6, 7] have also been proposed, where a decision maker is asked to provide inputs/choices of
preferred solutions during the search in an attempt to deliver designs in areas of interest. However, such user
information may be hard to come by or at times misleading in absence of prior knowledge about the nature of
the POF. For certain problems, reduction of original set of objectives to a manageable number has also been
suggested [8]. Although each of these methods have their advantages and applicability, obtaining a well spread
and converged POF for MaO problems still remains a challenge. In this regard,decompositionbased methods
[9, 10] have been most promising so far, which generate a set of diverse reference directions in the objective space
and optimize linear combination of objectives along these directions to deliver diverse solutions on the POF.
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It is to be noted that all the studies mentioned above have been presented in the context of determinis-
tic optimization, i.e., the original problem formulation itself had many objectives and no uncertainties in vari-
ables/objectives are considered. However, certain other useful classes of problems may also be modeled as MaO
problems. For example, when a robust optimum is sought instead of deterministic optimum, the metrics for ro-
bustness could be added as additional objectives to the problem, resulting in an MaO problem. Similarly, one can
also consider the problem of re-design for robustness of an existing product as an MaO problem. However, such
extensions of many-objective optimization have only recently been proposed by the authors [11].

In this paper, an enhanced Decomposition Based Evolutionary Algorithm (DBEA) is presented for solving
MaO problems in Section 2. Thereafter, its applications aredemonstrated using three different classes of problems
– deterministic, robust and re-design in Section 3. An additional special case is also illustrated in Section 3.
Numerical experiments are presented on examples from civil, mechanical and aerospace engineering domain to
highlight the benefits of the proposed approach. A summary ofthe work is given in Section 4.

2 Decomposition based Evolutionary Algorithm (DBEA)

The proposed algorithm is referred to as Decomposition Based Evolutionary Algorithm (DBEA). It generates a set
of uniform reference direction through systematic sampling. The quality of solution a solution is measured by its
distance from an associated direction and the distance fromideal point (in scaled objective space). While the first
version of the algorithm [10] used a steady state model, it has been continually improved and the DBEA presented
here uses generational model which is amenable to parallelization and has a number of enhancements over its first
version. The pseudo-code of DBEA is presented in Algorithm 1and the details of its key components are described
below.

Algorithm 1 Decomposition Based Evolutionary Algo-
rithm (DBEA)
Require: Genmax (maximum number of generations),W (number of reference

points),pc (probability of crossover),pm (probability of mutation),ηc (crossover
index),ηm (mutation index)

1: i=1;
2: Generate W reference points using Normal Boundary Intersection (NBI)
3: ConstructW reference directions; Straight lines joining origin andW reference

points
4: Initialize the population using LHS samplingPi ;

∣

∣Pi
∣

∣ = W
5: EvaluatePi and compute the ideal pointzI and Nadir pointzN

6: Scale the individuals ofPi usingzI andzN

7: Compute d1 andd2 for all individuals inPi

8: Assign individuals ofPi to the reference directions;
9: while (i ≤ Genmax) do

10: Create C offspring fromPi via recombination;
11: EvaluateC and compute Ideal point (zI ) and Nadir point (zN)
12: Scale the individuals ofPi+C usingzI andzN

13: Compute d1 andd2 for all individuals inC+Pi

14: Replace individuals inPi usingC
15: Pi+1 =Pi

16: i=i+1
17: end while

Generate: A structured setW reference
points is generated spanning a hyperplane
with unit intercepts in each objective axis
using normal boundary intersection method
(NBI) [12]. The approach generatesW
points on the hyperplane with a uniform
spacing ofδ = 1/s for any number of ob-
jectives M with s unique sampling loca-
tions along each objective axis. The ref-
erence directions are formed by construct-
ing a straight line from the origin to each
of these reference points. A population
size equal to the number of reference points
is used, generated using Latin Hypercube
Sampling (LHS).
Scale: The objective values are scaled be-
tween between 0 and 1. If any coordinate
of the ideal point matches with the corre-
sponding coordinate of the Nadir point, the
scaled value of the corresponding objective
is set to 0.
Compute: Two measuresd1 and d2 are
computed for all feasible solutions. The
first measured1 is the Euclidean distance between origin and the foot of the normal drawn from the solution
to the reference direction, while the second measured2 is the length of the normal. Mathematically,d1 andd2

are computed asd1 = wT f′(x); d2 = ‖f′(x)−wT f′(x)w‖, wherew is a unit vector along any given reference
direction. A value ofd2 = 0 implies that the solutions are perfectly aligned along therequired reference directions
ensuring good diversity, while a smaller value ofd1 indicates superior convergence.
Assign: If all solutions in the population are infeasible, solutions are randomly assigned to the reference directions.
Since the population size is equal to the number of referencedirections, every direction has an associated solution.
If the population has one or more feasible solutions, the feasible set of solutions are randomly shuffled (to avoid
any bias). Each solution is assigned to a reference direction for which itsd2 is minimum. The assigned direction is
removed from the list of available reference directions andfeasible solutions are sequentially assigned following
the shuffled list. Subsequently, infeasible solutions are randomly assigned to the remaining directions.
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Create: The process of offspring creation involves two steps,i.e., identification of participating parents for recom-
bination and the recombination process itself. Two participating parents are recombined using simulated binary
crossover (SBX) and polynomial mutation (PM). The first offspring (out of two) is considered as a member ofC.
Thus to generateW offspring solutions,W participating parents and their corresponding mating partners need to
be identified. The selection of participating parents and their corresponding mating partner depends on the state of
the population. If all the solutions in the parent population P are infeasible, the participating parents are identified
via binary tournament, where their fitness measure is based on their sum of constraint violation. If all the solutions
in the population are feasible, the first set of participating parents are the members ofP itself, while their partners
are identified using a roulette wheel selection. The use of roulette wheel induces a stochastic selection pressure to
prefer partners that are close to a reference direction. In the event there is a mix of feasible and infeasible solutions
in the population, mating partner selection for a feasible individual follows the schemes described above. To iden-
tify the rest of participating parents and their partners, the following strategy is adopted. The infeasible solutions
in the population are first sorted based on their sum of constraint violation values and assigned to the set of weight
directions (take note that these weight directions had infeasible solutions associated with them and this process
alters the previous assignment). Following that, binary tournaments are conducted among all individuals in the
population to identify the remaining participating parents and their mating partners. Such a process encourages the
recombination between feasible and infeasible solutions.
Replace: The aboveCreate process will result inC, i.e., a set ofW offspring. Since the individuals inP are
already assigned to reference directions, such a process essentially looks through the list ofC to identify potential
candidates for replacement. In the event there are infeasible solutions inP, a sequential replacement scheme is
adopted, wherein a solution fromC with better fitness replaces the worst infeasible individual in P. Such a process
will continue till all members ofP become feasible. In the event all individuals inP are feasible, a sequential
replacement scheme is once again adopted. In such a process,an individual fromC replaces a dominated individual
of P. In the event the offspring solution fails to dominate any individual in P, the replacement is carried out based
on their fitness computed using thed2 measure (smallerd2 preferred). The process also adopts a single replacement
policy, wherein an offspring can only replace one individual of P.

The constraint handling approach used in this work is based an on epsilon level comparison and has been
reported earlier in [10]. The process adaptively controls an allowable constraint violation measure, which offers
the marginally infeasible solutions to be selected as opposed to a feasibility first principle.

3 Numerical Experiments

In this section, numerical experiments are conducted usingthe proposed DBEA on a number of engineering prob-
lems. As mentioned previously, three different kind of problems are considered, namely deterministic, robust and
re-design problems; along with an additional special case.These experiments are discussed next. For each of the
experiments, the parameters chosen are:Genmax= 100,pc = 1 , pm = 0.1 , ηc = 30,ηm = 20.

3.1 Deterministic optimization

For deterministic MaO optimization, two problems are chosen, which are discussed below.
Thewater resource management (WRM) problem was proposed in [13] in the context of urban planningand

has emerged from the environmental engineering domain. Theproblem has three design variables: local detention
storage capacity , maximum treatment rate and the maximum allowable overflow rate. The objective functions to
be minimized aref1 = drainage network cost,f2 = storage facility cost,f3 = treatment facility cost,f4 = expected
flood damage cost, andf5 = expected economic loss due to flood.

Thegeneral aviation aircraft (GAA) is an example from aerospace engineering, first introduced by Simpson
et al. [14]. The problem involves 9 design variables: cruise speed, aspect ratio, sweep angle, propeller diam-
eter, wing loading, engine activity factor, seat width, tail length/ diameter ratio and taper ratio and the aim is to
optimize 10 objectives: Minimizef1 =takeoff noise,f2 =empty weight,f3 =direct operating cost,f4 =ride rough-
ness,f5 =fuel weight, f6 =purchase price,f7 =product family dissimilarity and maximizef8 = the flight range,
f9 =lift/drag ratio andf10 =cruise speed.

Thirty independent runs are conducted on the above two problems. Population sizes chosen for WRM and
GAA are 210 and 715, respectively. Two standard metrics are used for measuring the quality of non-dominated
set of solutions obtained by the algorithm, namelyHypervolumeandInverse Generational Distance (IGD). Both
of these measures provide a quantification of overall convergenceand diversity of the solutions obtained and are
hence commonly used for benchmarking MO algorithms [15]. A high value of hypervolume and low value of IGD
indicates better quality of the POF obtained by an algorithm.
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The results are compared with a well established decomposition based algorithm called MOEA/D (Multiob-
jective Evolutionary Algorithm Based on Decomposition) [9], shown in Table 1. It is observed that the best, mean
and median metric values (both Hypervolume and IGD) across 30 runs achieved using DBEA are better than those
obtained using MOEA/D. Furthermore, the standard deviations (Std.) obtained using DBEA is also lower than
MOEA/D for all cases except Hypervolume for GAA, which reflects its consistency in obtaining the competitive
results. For the case of Hypervolume of GAA, the reason for DBEA’s standard deviation being higher is that the
Hypervolume values themselves are significantly higher than those from MOEA/D. In terms of magnitude of Std.
relative to mean values, DBEA performs much better.

Table 1: Performance metrics values for deterministic problems across 30 runs

Water resource management
Algorithm Metric Best Mean Median Worst Std

DBEA
Hypervolume

0.43913 0.43628 0.43613 0.43378 0.00131
MOEA/D 0.35660 0.29864 0.29803 0.22559 0.03601

DBEA
IGD

0.08324 0.09417 0.09084 0.11909 0.01038
MOEA/D 0.07773 0.13413 0.13386 0.18848 0.02925

General aviation aircraft
Algorithm Metric Best Mean Median Worst Std

DBEA
Hypervolume

0.03460 0.02583 0.02582 0.01647 0.00450
MOEA/D 0.01011 0.00303 0.002722 0.00094 0.00180

DBEA
IGD

0.28656 0.30918 0.30514 0.38737 0.02019
MOEA/D 0.30685 0.41841 0.41088 0.51788 0.05346

3.2 Robust design optimization

In the previous section (and in most literature), the optimization problems are considereddeterministic, i.e., it
is assumed that performance estimates are exact and variable values can be achieved to an arbitrary precision.
However, in practice, most engineering designs operate under uncertainties that may emerge from varying ambient
conditions, material imperfections, inaccuracies in analyses/simulations, manufacturing precision etc. This work
considers uncertainties in design variables only. For practical implementation, designs need to be robust,i.e., less
sensitive in the presence of uncertainties.

To obtain robust solutions, the deterministic problem needs to be transformed to a robust formulation by using
expectedvalues for performance and constraints instead of deterministic values. Two kinds of robustness measures
need to be considered under uncertainty:feasibility robustness(the design should not become infeasible) and
performance robustness(the performance should not deteriorate). They are quantified in terms ofsigmalevels, a
terminology used in industry to judge the reliability of design [11]. Most of the past studies have either considered
these measures asconstraintsrather thanobjectives, or have only considered one of these robustness measures
instead of both. This has been partially motivated by lack ofgood techniques for solving MaO problems, because
even if the original problem has only 2-3 objectives, the reformulated robust problem will become a MaO problem.

Using the robustness as constraints requires one to set the level of desired robustness level (say> 4σ ) before
optimization, which delivers only a partial solution set for the problems. Furthermore, it is not possible to predict
the robustness levels expected from the optimization exercise without a priori knowledge about optimum solutions,
in which case the optimization may not return any solutions (as there may not exist any 4σ designs). Only by con-
sidering the robustness measures as objectives can one obtain a full range of solutions with all possible trade-offs
among the performance objectives, feasibility robustnessand performance robustness. Towards this goal, in this
paper, the deterministic problem is reformulated as an MaO problem as shown in Equation 1. This formulation is
referred to as Feasibility and Performance Robust (FPR) formulation. For illustration of the concept, a mechanical
design example from automotive industry is considered next.

Minimize: f ′i (x) = µ fi (x), i = 1,2, ......M {expectedperformance objectives;M= no. of objectives}

Maximize: f ′M+1(x) = Min(sigmag,Rc) {feasibility robustness}

Maximize: f ′M+2(x) = Min(sigmaf ,Rf ) {performance robustness}

Subject to:sigmag ≥ 0

where: sigmag ≡ Min(µg j (x)/σg j (x)), j = 1. . .K (no. of constraints)

sigmaf ≡ Min(σ0, j/σ f j (x)), j = 1. . .M (no. of objectives)

σ0, j , j = 1. . .M are allowable performance variations in each objective

(1)
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Figure 1: Robust solutions ob-
tained for VCOP using DBEA.
Here, Sigma is overall,i.e., both
feasibility and performance robust-
ness achieve the indicated level

Vehicle Crash worthiness Optimization Problem (VCOP): VCOP has
been studied in various works including Sunet al. [16]. A modified bi-
objective formulation of the problem is studied in this paper which seeks to
maximize the post-impact energy absorption (U) of the vehicle structure and
aims to minimize the structural weight (Ms), subject to the constraint on peak
deceleration (a). The calculations forU , M anda are done as suggested in
[16]. A higher energy absorption lowers the risk to the occupants of the car.
However, increase in energy absorption often leads to unwanted increase in
the structural weight. To limit impact severity, a constraint on maximum
deceleration is imposed in this formulation which is assumed to be 40 g (g
= 9.81 m/s2). Part thicknesses of three key members – inner rail, outer rail
and the cradle rails – of the vehicle front end structure havebeen chosen as
design variables for the crash worthiness optimization problem. For each
variable, the uncertainty is assumed to follow a Gaussian distribution with
σ = 0.05. For each objective, maximum allowableσ f ,0 is set as 2.1. The
results obtained using DBEA on the problem are shown in Figure 1. It can
be clearly seen that the delivered set of designs span a rangeof sigma levels achievable, between 0 and 6σ . This
gives the user a choice to select the design which is most suitable for the application.

3.3 Re-design for robustness
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Figure 2: Solutions obtained for FPRR formulation of CSIP us-
ing DBEA.

Next, the applicability of presented DBEA
is considered for “re-design for robustness (RDR)”.
RDR is an endeavor to improve the robustness
of anexistingdesign by doing minimal changes
to it. This need could arise, for example, in
case operating conditions of the product have
changed due to unforeseen circumstances. In
such situations, instead of discarding all in-
ventory of components for the product and re-
designing it from scratch, it would be of great
value to investigate whether only a few compo-
nents could be replaced for making the prod-
uct robust. In order to solve this problem, apart
from the objectives considered in previous sub-
section, one more objective,fM+3, is added for
minimization, which is the number of components different from the base design. This formulation is referred to
as FPRR formulation (FPR for Re-design), and containsM +3 objectives, whereM is the number of objectives in
the deterministic formulation. To evaluate the objectivefM+3, a binary string is maintained in which 0 indicates
the variable value is same as base design, whereas 1 indicates it’s different. This binary string is also evolved along
with the variable vectors. For illustration of the concept,a mechanical design example from automotive industry is
considered next where the objective is to reduce the weight of a car subject to constraints on satisfaction of several
safety criteria in the event of side impact [17].
Car Side Impact Problem (CSIP): In CSIP, the uncertainties associated with 7 (out of 11) variables are modeled
as Gaussian distribution withσxi = 0.0408, i = 1,2. . .7, andσ f ,0 is set as 2.5. The base design is taken from [18] as
{1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.345,0.192,0,0}, with a weight of 29.05 units; whereas the deterministic optimum for
the problem is reported to be 23.59. The base design is actually infeasible, violating two of the constraints (lower
rib deflection and pubic force criteria) marginally. The results obtained using DBEA on the FPRR formulation of
CSIP are shown in Figure 2. It can be seen that by merely changing 2 variables out of 7, one can achieveup to6σ
designs, at the cost of corresponding weight values going upto 33.2 units. As the number of changed components
increase, the same can be achieved with lower compromises inweight values.

3.4 Special class of single objective optimization problems with varying parameters

Lastly, we consider a special case where the original problem contains only single objective (SO), but this neces-
sitates it being solved for several parameter settings according to the specific design case. Instead, it can be solved
as multi-objective problem to get entire range of solutionsfor all parameter settings in one run. This is illustrated
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using a reinforced beam design example.
Thereinforced concrete beam design problem (RCB) has been studied as a constrained, single objective opti-
mization problem in [19]. The problem was also solved for various values of a parametera6 (minimum allowable
width)[19].
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Figure 3: Optimal designs for
RCB problem

Instead of independent runs of SO optimization with different parameter values,
we reformulate the problem and solve it as a bi-objective optimization problem,
i.e., minimize−a6 (minimum allowable width) and minimize total cost. The
results using DBEA for a single run are presented in Figure 3 for various values
of the minimum allowable width parameter. The values are in agreement with
those reported in [19] for minimum allowable width of 30. While most studies
focus on the ability of MO formulations to deliver a set of trade-off solutions for
problems involving conflicting set of objectives, the principle presented here can
be exploited for problems such as above to deliver solutionsspanning the region
of interest (different parameter values) when objectives are not conflicting.

4 Summary

In this paper, we have introduced an improved generational form of a decom-
position based evolutionary algorithm for the solution of optimization problems
involving many objectives. Apart from its ability to efficiently solve determin-
istic MaO problems, we have highlighted its extended use fortwo other important class of problems i.e. robust
optimization and re-design for robustness. Numerical examples have been selected from various domains (me-
chanical, civil and aerospace) to highlight the benefits of proposed approach.

References
[1] Deb, K., 2001.Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.
[2] Ishibuchi, H., Tsukamoto, N., and Nojima, Y., 2008. “Evolutionary many-objective optimization: A short review”. In Proc. IEEE World

Congress Computational Intelligence, pp. 2419–2426.
[3] Sato, H., Aguirre, H., and Tanaka, K., 2007. “Controlling dominance area of solutions and its impact on the performance of moeas”. In

Lecture notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization-EMO, Springer-Verlag, Berlin, pp.5–20.
[4] Koppen, M., and Yoshida, K., 2007. “Substitute distanceassignments in NSGA-II for handling many-objective optimization problems”.

In Lecture notes in Computer Science 4403: Evolutionary Multi-Criterion Optimization, Springer Berlin/Heidelberg, pp. 727–741.
[5] Zitzler, E., and Kunzli, S., 2004. “Indicator-based selection in multiobjective search”. In Lecture notes in Computer Science 3242:

Parallel Problem Solving from Nature - PPSN VIII, Springer Berlin/Heidelberg, pp. 832–842.
[6] Deb, K., Sinha, A., Korhonen, P., and Wallenius, J., 2010. “An interactive evolutionary multiobjective optimizationmethod based on

progressively approximated value functions”.Evolutionary Computation, IEEE Transactions on,14(5), Oct, pp. 723–739.
[7] Thiele, L., Miettinen, K., Korhonen, P. J., and Molina, J., 2009. “A preference-based evolutionary algorithm for multi-objective optimiza-

tion”. Evolutionary Computation,17(3), pp. 411–436.
[8] Singh, H. K., Isaacs, A., and Ray, T., 2011. “A Pareto corner search evolutionary algorithm and dimensionality reduction in many-

objective optimization problems”.IEEE Transactions on Evolutionary Computation,15(4), pp. 539–556.
[9] Zhang, Q., and Li, H., 2007. “MOEA/D: A multiobjective evolutionary algorithm based on decomposition”.IEEE Transactions on

Evolutionary Computation,11, pp. 712–731.
[10] Asafuddoula, M., Ray, T., and Sarker, R., 2013. “A decomposition based evolutionary algorithm for many objective optimization with

systematic sampling and adaptive epsilon control”. In Evolutionary Multi-Criterion Optimization, R. Purshouse, ed., Vol. 7811 ofLecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 413–427.

[11] Asafuddoula, M., Singh, H., and Ray, T., 2014. “Six-sigma robust design optimization using a many-objective decomposition based
evolutionary algorithm”.IEEE Transactions on Evolutionary Computation(99). Available online.

[12] Das., I., and Dennis, J. E., August 1998. “Normal-bounday intersection: A new method for generating Pareto optimal points in multicri-
teria optimization problems”.SIAM J. Optim.,8(3), pp. 631–657.

[13] Musselman, K., and Talavage, J., 1980. “A trade-off cut approach lo multiple objective optimization”.Operations Research,28(6),
pp. 1424–1435.

[14] Simpson, T. W., Chen, W., Allen, J. K., and Mistree, F., 1996. “Conceptual design of a family of products through the useof the robust
concept exploration method”.AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,2, pp. 1535–1545.

[15] Singh, H., 2011. “Development of optimization methods to deal with current challenges in engineering design optimization”. PhD thesis,
School of Engineering and Information Technology, University of New South Wales Canberra, Australia.

[16] Sun, G., Li, G., Zhou, S., Li, H., Hou, S., and Li, Q., 2011. “Crashworthiness design of vehicle by using multiobjective robust optimiza-
tion”. Structural and Multidisciplinary Optimization,44(1), pp. 99–110.

[17] Saxena, D. K., and Deb, K., 2007. “Trading on infeasibility by exploiting constraints criticality through multi-objectivization: A system
design perspective”. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, IEEE, pp. 919–926.

[18] Gu, L., Yang, R., Tho, C., Makowskit, M., Faruquet, O., and Y. Li, Y. L., 2001. “Optimisation and robustness for crashworthiness of side
impact”. International Journal of Vehicle Design,26(4), pp. 348–360.

[19] Coello, C. C., Christiansen, A. D., and Hernandez, F. S., 1997. “A simple genetic algorithm for the design of reinforced concrete beams”.
Engineering with Computers,13(4), pp. 185–196.

6


