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1. Abstract  

The article presents the optimization of trusses subject to natural frequency constraints. Three planar trusses 
(10-bar, 37-bar and 200-bar structures) and three spatial trusses (52-bar, 72-bar and 120-bar structures) are 
surveyed. Differential Evolution method combined with finite element code is employed to find the optimal 
cross-section sizes and node coordinates. Constraint-handling technique is only based on a clear distinction 
between feasible solutions and infeasible solutions. The obtained results are equivalent to or better than solutions 
in literature. 
2. Keywords: Truss optimization, natural frequency, differential evolution 
 
3. Introduction 

Truss optimization is one of the oldest developments of structural optimization. There were many 
publications on this field. However, except for simple problems that have been solved analytically, the search 
space and constraints are quite complex in most of actual structures. Consequently, there might not have explicit 
functions of constraints and closed-form solutions of stress, strain or natural frequency for these structures. In 
addition, due to the efficiency and capability of optimization methods, the so-called “optimum result” is often 
revised and improved with various approaches and algorithms. Structural optimization can be classified into three 
categories: cross-section size, geometry and topology. Depending on requirements, the study can include from one 
to all of the above types. This article only considers two types of optimization: the cross-section size and the 
geometry of trusses with natural frequency constraints. Six planar and spatial trusses are surveyed in this work. 
These structures are very common in literature and there are similar studies in [1-6]. However, the differences in 
this article are the quality of results and new groups of elements in 200-bar and 52-bar structures. 

Although Differential Evolution (DE) has been proposed by Storn and Price [7] since 1997 and attracted 
many studies, there is not much application of DE to truss optimization with natural frequency constraints. Kaveh 
and Zolghadr [5] have compared nine algorithms but without DE. Recently, Pholdee and Bureerat [6] have 
considered DE in their comparison of various meta-heuristic algorithms for these problems. 
 
4. Differential Evolution 

Differential Evolution is a non-gradient optimization method which utilizes information within the vector 
population to adjust the search direction. Consider D-dimensional vectors xi,G, i = 1, 2,…, N as a population for 
each generation G, xi,G+1 as a mutant vector in generation (G + 1) and ui,G+1  as a trial vector in generation (G + 1). 
There are three operators in DE as follows. 

•   Mutation: 
vi,G+1 = xr1,G + FM(xr2,G – xr3,G)  i = 1, 2,…, N           (1a) 

 
Another variant uses the best vector and two difference vectors for mutation. In this variant, Eq. (1a) becomes 

vi,G+1 = xbest,G + FM(xr1,G + xr2,G – xr3,G –  xr4,G)            (1b) 
 
where r1, r2, r3, r4 are random numbers in [1, N] and integer, which are mutually different and different from 

the running index i; and FM is mutation constant in [0, 2]. 
In this research, the variant with Eq. (1b) will be adopted. 

•   Crossover: 
ui,G+1  = (u1i,G+1, u2i,G+1,…, uDi,G+1)                      (2) 
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where CR is the crossover constant in [0, 1]; r is random number in (0, 1); and k is random integer number in 

[1, D], which ensures that ui,G+1 gets at least one component from vi,G+1. 
•   Selection:  
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where f is the objective function. 
The DE was originally proposed for unconstrained optimization problems. For constrained optimization 

problems, a constraint-handling technique suggested by Jimenez et al [8] is supplemented. In this technique, the 
comparison of two solutions complies with the rule: (i) for two feasible solutions, the one with a better objective 
function value is chosen; (ii) for one feasible solution and one infeasible solution, the feasible solution is chosen; 
and (iii) for two infeasible solutions, the one with a smaller constraint violation is chosen. This technique requires 
no additional coefficient and gives a natural approach to the feasible zone from trials in the infeasible zone. 
 
5. Problem Formulation and Results 

Generally, the optimization problem can be defined as follows: 

Minimizing  ∑
=

=
N

i
iii ALρ W 

1

               (4) 

Subject to:  ω i ≥  ω i,min     i = 1..K 
Ai,min ≤ Ai ≤ Ai,max i = 1..N  

    xi,min ≤ xi ≤ xi,max  i = 1..M 
 
where, W is the truss weight; ρi, Li and Ai are the density, length and cross-section area of the ith element, 

respectively; ωi and ωi,min are the ith natural frequency and corresponding frequency limit; Ai,min and Ai,max are the 
lower bound and upper bound of the ith cross-section area; xi,min and xi,max are the lower bound and upper bound of 
the ith coordinate; N, K and M are the number of elements in the truss, number of frequencies subject to limits  and 
number of nodes subject to coordinate constraints, respectively. 

This study surveys three planar trusses (10-bar, 37-bar and 200-bar structures) and three spatial trusses 
(52-bar, 72-bar and 120-bar structures). For brevity, the basic parameters of problems and the optimal results 
compared with those in the literature are listed in table 1. Parameters of DE are as follows: population N = 50 
(except N = 150 for 200-bar truss), crossover constant CR = 0.9, mutation constant FM = 0.5, number of iterations 
I = 150. Each problem is performed in 50 independent runs (except 100 runs for 200-bar truss). Other details are 
described in each problem. 

 
Table 1: Parameters and the minimal weight of trusses 

 

Parameters Unit Data of problems 
10-bar 37-bar 200-bar 52-bar 72-bar 120-bar 

Modulus of 
elasticity, E N/m2 6.98 

×1010 
2.1 
×1011 2.1×1011 2.1×1011 6.98×1010 2.1×1011 

Material 
density , ρ kg/m3 2770 7800 7860 7800 2770 7971.81 

Frequencies 
constraints Hz 

ω1 ≥ 7 
ω2 ≥ 15 
ω3 ≥ 20 

ω1 ≥ 20 
ω2 ≥ 40 
ω3 ≥ 60 

ω1 ≥ 5 
ω2 ≥ 10 
ω3 ≥ 15 

ω1 ≤ 15.916 
ω2 ≥ 28.648 

ω1 = 4 
ω3 ≥ 6 

ω1 ≥ 9 
ω2 ≥ 11 

Cross-section 
bounds m2 [0.645×10-4 , 

40×10-4] [10-4,10-3] [0.1×10-4, 
30×10-4] [10-4, 10-3] [0.645×10-4, 

30×10-4] 
[10-4, 

129.3×10-4] 
Nodes 

coordinate 
bounds 

m n/a 
See 

details in 
5.2 

n/a See details 
in 5.4 n/a n/a 

Minimal 
weight Wmin 

kg 524.56 359.45 2296.38 191.28 324.36 8710.90 

Wmin [1] kg 529.09 n/a 2298.61 197.31 327.51 9046.34 
Wmin [2] kg 535.61 n/a n/a n/a 326.67 n/a 
Wmin [3] kg 524.88 364.72 n/a 193.36 324.50 n/a 
Wmin [4] kg 535.14 363.03 n/a 207.27 n/a n/a 
Wmin [5] kg 532.34 360.56 n/a 195.62 334.66 8886.92 
Wmin [6] kg 524.49 359.25 n/a 195.19 324.32 n/a 
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Table 2: Optimal results of planar trusses 
 

10-bar truss 37-bar truss 200-bar truss 

Parameters  Results Parameters  Results Parameters Results 

A1 (cm2) 35.0930    Y3,Y19 (m) 0.9736 A1 (cm2) 0.2789 
A2 (cm2) 14.8802    Y5,Y17 (m) 1.3372 A2 (cm2) 0.2725 
A3 (cm2) 35.3906    Y7,Y15 (m) 1.4965 A3 (cm2) 5.7222 
A4 (cm2) 14.7917     Y9,Y13 (m) 1.6024 A4 (cm2) 0.5423 
A5 (cm2) 0.6450     Y11 (m) 1.6834 A5 (cm2) 1.4830 
A6 (cm2) 4.5550    A1, A27 (cm2) 2.9844 A6 (cm2) 3.1676 
A7 (cm2) 23.6841    A2, A26 (cm2) 1.0570 A7 (cm2) 4.8800 
A8 (cm2) 23.5333    A3, A24 (cm2) 1.0806 A8 (cm2) 7.9840 
A9 (cm2) 12.5161    A4, A25 (cm2) 2.6508 A9 (cm2) 18.7813 
A10 (cm2) 12.2117 A5, A23 (cm2) 1.3097 A10 (cm2) 0.1000 
ω1 (Hz) 7.0002    A6, A21 (cm2) 1.0469 A11 (cm2) 0.1000 
ω2 (Hz) 16.2058    A7, A22 (cm2) 2.6815 A12 (cm2) 0.1000 
ω3 (Hz) 20.0003 A8, A20 (cm2) 1.3132 A13 (cm2) 0.1000 
Wmin (kg) 524.56 A9, A18 (cm2) 1.4278 A14 (cm2) 0.2326       
 A10, A19 (cm2) 2.6826 A15 (cm2) 0.8481 

A11, A17 (cm2) 1.1798 A16 (cm2) 1.2137       
A12, A15 (cm2) 1.2232 A17 (cm2) 1.6352       
A13, A16 (cm2) 2.3931 A18 (cm2) 2.0476       
A14 (cm2) 1.0000 A19 (cm2) 4.3721 
ω1 (Hz) 20.0565 ω1 (Hz) 5.0004 
ω2 (Hz) 40.0129 ω2 (Hz) 12.3446 
ω3 (Hz) 60.0983 ω3 (Hz) 15.0018 
Wmin (kg) 359.45 Wmin (kg) 2296.38 

 
5.1 Planar 10-bar truss 

The truss is shown in figure 1 where the added mass of 454 kg is attached at nodes 3– 6. Only cross-section 
sizes are optimized in this problem. The optimal weight is Wmin = 524.56 kg and converges after 150 iterations. 
Sizes of optimal cross-sections and natural frequencies are presented in table 2. 
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5.2 Planar 37-bar truss 

The truss is shown in figure 2 where the added mass of 10 kg is attached at lower nodes. The lower bars have 
a fixed cross-section area of 0. 004m2. For this problem, both cross-section sizes and y-coordinate of upper nodes 
are optimized. Upper nodes can move symmetrically in vertical direction. The optimal weight is Wmin = 359.45 kg 
and converges after 150 iterations. Sizes of optimal cross-sections and coordinates of nodes are listed in table 2. 

Figure 1:  (a) Model of 10-bar truss 
(b) Optimal cross-section sizes (b) 
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5.3 Planar 200-bar truss 

154
4

5
5

6
6

7
7

8
8

1 2 3 4 5

6 8 10

15 16

7 9 11 12 13 14

17 18 19

20 22 24 26 2821 23 25 27

29 30 31 32 33

34 36 38 40 4235 37 39 41

43 44 45 46 47

48 50 52 54 5649 51 53 55

57 58 59 60 61

62 64 66 68 7063 65 67 69

71 72 73 74 75

76 77

1

10

11

12

13

14

4  x  6.096m

Y

X

10
  x  
3.
65
76
m

9.
14
4m

1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1

1

1

2 2 2 2

2 2 2 2

3

3

3

3

3

3

3

3

4
4

4
4

4
4

4
4

5
5

5
5

5
5

5
5

6
6

6
6

6
6

6
6

7
7

7
7

7
7

7
7

8 8 8 8

8 8 8 8

9 9 9 9 99

10 10 10 10 10 10 10

11 11 11 11 11 11 11

12 12 12 12 12 12 12

13 13 13 13 13 13 13

14 14 14 14 14 14 14

15 15 15

15 15 15 15

15

15

15

15

15

15

15

15

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

17 17

17

17

17

17

17

17 17

17

17

17 17

17

17

17

18 18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

19 19

19

19

19

19

19

19

19

19

19

19

19

19

19

19

 
 
 
 
5.4 Spatial 52-bar truss 

The truss is shown in figure 4 where the added mass of 50kg is attached at free nodes 1–13. Both 
cross-section sizes and coordinate of nodes are optimized in this problem. Free nodes can move in range of ±2m 
from their initial positions such that the symmetry is reserved. It notes that elements are divided to 9 groups which 
differs from 8 groups in [1]. The optimal weight is Wmin = 191.28 kg and converges after 150 iterations. Sizes of 
optimal cross-sections, coordinates of nodes and natural frequencies are listed in table 3. 
 
5.5 Spatial 72-bar truss 

The truss is shown in figure 5 where the added mass of 2270 kg is attached at nodes 17–20. Only 
cross-section sizes are optimized in this problem. Elements are divided to 16 groups, as seen in table 3. The 
optimal weight is Wmin = 324.36 kg and converges after 150 iterations. Sizes of optimal cross-sections and natural 
frequencies are listed in table 3. 

Figure 2:  (a) Model of initial 37-bar truss, (b) Optimal shape,  
(c) Convergence of the optimal result 

 (a)  

The truss is shown in figure 3 where the added 
mass of 100 kg is attached at nodes 1–5. Only 
cross-section sizes are optimized. In comparison with 
the others, this problem has the high static 
indeterminacy, large number of element and wide 
range of cross-section size. This makes the 
optimization more difficult. Our approach is to use 19 
groups of elements instead of 29 groups in [1].  Thus, 
the search space decreases one third. 

For this structure, it notes generally that the 
lower storey, the bigger cross-section size. For 
example, the cross-section sizes gradually increase in 
groups of elements (1, 2, 3), (4, 5, 6, 7, 8, 9), (10, 11, 
12, 13, 14), (15, 16, 17, 18, 19). In the article, we use 
this characteristic for the initialization of random 
values in DE algorithm. The optimal weight is Wmin = 
2296.38 kg. Sizes of optimal cross-sections and 
natural frequencies are presented in table 2. 

Figure 3:  (a) Model of 200-bar truss 
(b) Convergence of the optimal result 

(c) 

(b) 
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5.6 Spatial 120-bar truss 
The truss is shown in figure 6 where the added masses are attached at nodes  as follows: 3000 kg at node 1, 

500 kg at nodes 2– 3, and 100 kg at nodes 14–37. Elements are divided to 7 groups, as seen in table 3. The optimal 
weight is Wmin = 8710.90 kg and converges after 150 iterations. Sizes of optimal cross-sections and natural 
frequencies are listed in table 3. 

 
6. Conclusion 
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Table 3: Optimal results of spatial trusses 
 

52-bar truss 72-bar truss 120-bar truss 
Parameters  Results  Parameters  Results Parameters  Results 

A1 – A4 (cm2) 1.0000       A1 – A4 (cm2) 16.9972 A1 – A12 (cm2) 19.4686    
A5 – A8 (cm2) 1.5406       A5 – A12 (cm2) 7.9173     A13 – A24 (cm2) 40.6526    
A9 – A12 (cm2) 1.0889      A13 – A16 (cm2) 0.6450     A25 – A36 (cm2) 10.7573    
A13 – A16 (cm2) 1.2652       A17 – A18 (cm2) 0.6503    A37 – A60 (cm2) 21.0849     
A17 – A24 (cm2) 1.0339       A19 – A22 (cm2) 12.5286 A61 – A84 (cm2) 9.7139    
A25 – A32 (cm2) 1.2461       A23 – A30 (cm2) 8.0249     A85 – A96 (cm2) 11.6176    
A33 – A40 (cm2) 1.3722 A31 – A34 (cm2) 0.6454     A97 – A120 (cm2) 14.8947 

 A41 – A44 (cm2) 1.0000       A35 – A36 (cm2) 0.6450     ω1 (Hz) 9.0013    
A45 – A52 (cm2) 1.6035       A37 – A40 (cm2) 7.9920     ω2 (Hz) 11.0001    
Z1 (m) 6.0710       A41 – A48 (cm2) 8.0029     Wmin (kg) 8710.90 
X2 (m) 2.6047       A49 – A52 (cm2) 0.6450                            

                    
 

Z2 (m) 3.7267       A53 – A54 (cm2) 0.6479     
X6 (m) 4.1584       A55 – A58 (cm2) 3.6988     
Z6 (m) 2.5000 

 
A59 – A66 (cm2) 7.8182     

ω1 (Hz) 15.2070      A67 – A70 (cm2) 0.6450     
ω2 (Hz) 28.6487      A71 – A72 (cm2) 0.6450     
Wmin (kg) 191.28 ω1 (Hz) 4.0002  

  ω3 (Hz) 6.0008  
 Wmin (kg) 324.36 
  

Figure 4:  (a) Model of initial 52-bar truss 
(b) Convergence of the optimal result 

For six considered problems, Differential 
Evolution gives better or equivalent results 
compared with other methods in the literature. The 
convergence is rapid in round first 50 iterations. 
Especially, the different number of element groups 
in 52-bar truss and 200-bar truss also makes the 
minimum weights improved. 
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Figure 5:  (a) Model of 72-bar truss 
(b) Convergence of the optimal result 

Figure 6:  (a) Model of 120-bar truss,  
(b) Convergence of the optimal result 
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