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1. Abstract
The paper concerns optimum design of elastic moduli corresponding to: i) nonhomogeneous isotropy, or to ii)
cubic symmetry, aimed at minimization of the total compliance. Similarly to the Free Material Design the cost of
design is assumed as the integral of the trace of the elastic moduli tensor over the feasible domain. A proof is given
that both the optimum design formulations discussed reduce to auxiliary problems being tensorial counterparts
of the Monge-Kantorovich scalar problem. The paper comprises numerical analysis of the mentioned auxiliary
problems and puts forward case studies concerning isotropy design. A characteristic feature of optimal isotropic
designs is emergence of auxetic properties, where Poisson ratio attains negative values.
2. Keywords: Free material design, compliance minimization, anisotropy, cubic symmetry.

3. Introduction
The Free Material Design (FMD) of structures subjected to a single load case leads to optimal material designs
being singular, viz. the optimal Hooke tensor occurs to have only one non-zero eigenvalue λ1. Thus in 3D case the
eigenvalues (or Kelvin moduli) of the optimal Hooke tensor are (λ1,0,0,0,0,0), while in 2D the optimal Kelvin
moduli are (λ1,0,0), cf. [1, 4, 5, 8]. One of the methods to make the optimal Hooke tensor non-singular is to
optimize the structure with respect to multiple loads, cf. [4, 5]. To arrive at positive values of all Kelvin moduli
in the 3D case one should optimize the structure with respect to at least six independent load variants. For the 2D
case three load cases suffice, see [4, 5].

A non-singular result can also be achieved by imposing isotropy, as shown recently by Czarnecki [6]. In this
version of FMD -called IMD or the isotropic material design- the main unknowns are two scalar fields k and µ

subjected to the isoperimetric condition expressed by the integral of the trace of Hooke tensor equal to 3k+10µ . A
less restrictive assumption, like cubic symmetry, leads to optimal values of the moduli among which one becomes
zero, see [7]. This version of FMD will be called CSMD (cubic symmetry material design). The aim of the present
paper is to publish these theoretical results and augment it with a numerical analysis. It occurs that the problems
IMD and CSMD reduce to auxiliary problems similar to those known from the theory of materials with locking
and having much in common with Monge-Kantorovich equation. The auxiliary minimization problems (in which
test stress fields run through the set of statically admissible stresses corresponding to the given load) are solved,
upon discretization, by representing the solutions via singular value decompositions (SVD) and then by performing
minimization over free parameters; hence the numerical method developed is similar in spirit to the force method
known from structural mechanics.

The paper puts emphasis on the links between FMD, IMD, CSMD and the minimum compliance problem as
set by Bouchitté and Buttazzo [3].

4. The FMD problem revisited
Let us recall the stress-based setting of FMD, see [5]. Let the linear form f (vvv) represent the work of given loads
on the virtual displacement field vvv = (v1,v2,v3) of the body occupying the domain Ω. Let Σ f represent the set of
statically admissible stress fields τττ = (τi j) such that∫

Ω

τi jεi j(vvv) dx = f (vvv) ∀ vvv ∈V (1)

where V is the space of kinematically admissible displacements while εi j(vvv) = 1
2 (vi, j +v j,i) where (·),i = ∂ (·)/∂xi.

Let ‖τττ‖ be the Euclidean norm or ‖τττ‖= (τi jτi j)
1/2. The Hooke’s law has the form τi j =Ci jklεkl(uuu) with uuu being

the unknown displacement field. This filed depends on the tensor field CCC which will be indicated by uuu = uuu(CCC).
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Let H1
Λ
(Ω) be the set of positive semidefinite fields CCC -which locally are elements of the set E4

s of fourth rank
tensors of appropriate symmetries - satisfying the isoperimetric condition which fixes the value Λ of the integral
of trCCC =Ci ji j over the given design domain Ω. In its original setting [1] the FMD problem is formulated as

J = min
CCC∈H1

Λ
(Ω)

f (uuu(CCC)) (2)

By expressing CCC by its spectral decomposition and performing minimization over the projectors, keeping the Kelvin
moduli λi as fixed, one rearranges the problem (2) to the form

J = min
τττ∈Σ f

min
λ1≥0∫

Λ

λ1dx=Λ

∫
Ω

1
λ1
‖τττ‖2 dx (3)

Now the minimization over the Kelvin modulus λ1 can be performed analytically, which leads to the formula

J = Z2/Λ , Z = min
τττ∈Σ f

∫
Ω

‖τττ‖ dx (4)

Thus the problem (2) is reduced to the above minimization problem with the integrand of linear growth. The result
(4) has been found in an elementary way, hence needs mathematical justification. The main problem lies in the
property of the integrand in problem in (4); its linear growth implies that the solutions cannot be, in general, sought
in the class of functions; the solutions are measures.

The result (4) can be justified by the methods developed in [3], see Theorem 2.3, p.144 therein. It is worth
showing here a complete proof of the estimate: J ≥ Z2/Λ. The Schwarz inequality is crucial, as seen below. Due
to τττ ∈ Σ f we have

f (vvv) =
∫
Ω

(
1√
λ1

τττ

)
·
(√

λ1εεε(vvv)
)

dx (5)

hence

f (vvv)≤

∫
Ω

1
λ1
‖τττ‖2 dx

1/2∫
Ω

λ1‖εεε(vvv)‖2 dx

1/2

(6)

Let ‖εεε(vvv)‖ ≤ 1 a.e. on Ω. Then

f (vvv)≤

∫
Ω

1
λ1
‖τττ‖2 dx

1/2∫
Ω

λ1 dx

1/2

=

∫
Ω

1
λ1
‖τττ‖2 dx

1/2

Λ
1/2 (7)

since now trCCC = λ1. Thus we estimate ∫
Ω

1
λ1
‖τττ‖2 dx≥ 1

Λ
( f (vvv))2 (8)

for vvv such that ‖εεε(vvv)‖ ≤ 1. Thus (8) implies

inf
τττ∈Σ f

inf
λ1≥0∫

Ω

λ1dx=Λ

∫
Ω

1
λ1
‖τττ‖2 dx≥ 1

Λ

 sup
‖εεε(vvv)‖≤1

a.e. on Ω

f (vvv)


2

(9)

where the left hand side is equal to J, see (3); this ends the proof of the estimate discussed. In papers [4, 5] the
following identity has been put forward

sup{ f (vvv) | ‖εεε(vvv)‖ ≤ 1 a.e. on Ω}= inf


∫
Ω

‖τττ‖ dx | τττ ∈ Σ f

 (10)

2



by invoking the arguments of Strang and Kohn [9] concerning the Michell truss problem. Just recently the present
authors have noted that the identity (10) has been proved by Bouchitté and Valadier [2]. Denoting the value of (10)
by Z one can rearrange (9) to the form

inf
τττ∈Σ f

inf
λ1≥0∫

Ω

λ1dx=Λ

∫
Ω

1
λ1
‖τττ‖2 dx≥ 1

Λ

 inf
τττ∈Σ f

∫
Ω

‖τττ‖dx

2

(11)

which proves J ≥ Z2/Λ.
Derivation (5) - (11) is inspired by some arguments used to prove Proposition 2.1 in [3]. This derivation is of

vital importance, since it shows the passage from the functional (3) having the integrand of the quadratic growth
to the functional with the integrand of linear growth at the right hand side of (11).

Much more subtle arguments are necessary to prove that J ≤ Z2/Λ which would complete the proof of (4).
In paper [3] and the papers cited therein one can find the equality (10) rearranged to the accurate form. The field
vvv should be a Lipschitz function from Lip1,ρ(Ω) being the closure in the space of continuous functions on Ω of
the set of C∞ functions with compact support vanishing on a given subset of Ω and such that ρ(∇vvv) ≤ 1 with
ρ(∇vvv) = ‖εεε(vvv)‖.

Having solved problem (10) one can express the optimal λ1 in terms of τττ∗ being the minimizer of (4) or (10).
The optimal body occupies the subdomain of Ω being the support of this measure, [4, 5].

5. The cubic symmetry material design (CSMD)
The set of admissible Hooke tensors will be restricted to the set of Hooke tensors of cubic symmetry at each point
x ∈Ω. Thus we assign to each point x a triplet of unit vectors (mmm(x),nnn(x), ppp(x)) and define the tensor

SSS = nnn⊗nnn⊗nnn⊗nnn+mmm⊗mmm⊗mmm⊗mmm+ ppp⊗ ppp⊗ ppp⊗ ppp (12)

for each point of Ω. Let us recall the expression for components of the unit tensor in E4
s

4
Ii jkl =

1
2
(δikδ jl +δilδk j) (13)

and let JJJ = 1
3 (δi jδkl). Define LLL = III−SSS, MMM = SSS−JJJ. All tensors CCC of cubic symmetry are represented by Walpole’s

formula [10]
CCC = aJJJ+bLLL+ cMMM (14)

with a,b,c being nonnegative moduli. The inverse of CCC equals

CCC−1 =
1
a

JJJ+
1
b

LLL+
1
c

MMM (15)

provided that all the moduli are positive. The trace of CCC equals trCCC = a+3b+2c. The cost of the design is defined
as the integral of trCCC over Ω and is assumed as equal Λ. The set of tensors CCC in Ω represented by (14) and satisfying
the mentioned cost constraint will be denoted by H2

Λ
(Ω).

The CSMD problem assumes the form (2) with H1
Λ

replaced by H2
Λ

. One can prove, see [7], that the compliance
J is still given by (4) with Z = Z2

Z2 = min
τττ∈Σ f

∫
Ω

|||τττ|||2 dx (16)

and
|||τττ|||2 =

1√
3
|trτττ|+

√
2‖devτττ‖ (17)

where trτττ = τii and

devτττ = τττ− 1
3
(trτττ)

2
III ,

2
III = (δi j) (18)

One can prove that |||.|||2 is a norm in E2
s . Let

|||εεε|||∗2 = sup
τττ 6=0

|τττ ·εεε|
|||τττ|||2

(19)
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be the norm dual to (17). The counterpart of the equality (10) reads

sup{ f (vvv) | |||εεε(vvv)|||∗2 ≤ 1}= inf


∫
Ω

|||τττ|||2 dx | τττ ∈ Σ f

 (20)

The trial fields vvv are of Lipschitz class previously mentioned, where now ρ(∇vvv) = |||εεε(vvv)|||∗2
The norm |||.|||∗2 defined by (19) can be expressed explicitly. Appropriate computation gives

|||εεε|||∗2 = max

{√
3

3
|trεεε|,

√
2

2
‖devεεε‖

}
(21)

Thus in the space of principal strains the ball |||εεε|||∗2 ≤ 1 assumes the shape of a cylindrical domain of length 2 and
radius 2

√
3/3.

The problem at the left hand side of (20) is mathematically simpler than the right hand side, but its solution
is of lesser importance. The maximizer vvv∗ does not determine the optimal moduli C∗i jkl directly. To find them one
cannot omit solving the problem (16).

Let τττ∗ be the minimizer of (16). Then the optimal triplet (mmm∗,nnn∗, ppp∗) coincides with the triplet of eigenvectors
of τττ∗. Moreover, the optimal moduli are expressed by

a∗(x) = Λ√
3Z2
|trτττ∗(x)|

b∗(x) = 0
c∗(x) = Λ√

2Z2
‖devτττ∗(x)‖

(22)

Note that trCCC∗(x) = a∗(x)+ 3b∗(x)+ 2c∗(x) = Λ

Z2 |||τττ∗(x)|||2 which shows that a∗,b∗,c∗ satisfy the isoperimetric
condition.

6. The isotropic material design (IMD)
The set H3

Λ
corresponding to isotropy will replace the set H1

Λ
in (2). The tensors CCC are now represented by

CCC = 3kJJJ+2µKKK (23)

with KKK =
4
III− JJJ and trCCC = 3k+10µ . As proved by Czarnecki [6], the formula (4) holds good with Z given by (16)

and with the integrand defined as below

|||τττ|||3 =
√

10|trτττ|+5
√

6‖devτττ‖ (24)

Contrary to obvious discrepancies between isotropic materials and cubic crystals the problem (16) differs only in
coefficients in (17) and (24). Assume τττ = τττ∗ is the minimizer of (4) with ‖.‖= |||.|||3.

The optimal moduli are expressed by

k∗(x) =

√
10
3

Λ

Z3
|trτττ∗(x)| , µ

∗(x) =

√
3

2
Λ

Z3
‖devτττ

∗(x)‖ (25)

Note that the integral of trCCC∗ is now equal to Λ. The support of τττ∗ determines the optimal body. Having the bulk
and shear moduli one can compute the optimal Poisson ratio ν∗. The interesting feature of many solutions is that
in some large subdomains the optimal Poisson ratio approaches -1 and in other parts of the domain it approaches
1/2. Thus the optimal structures turn out to be of auxetic properties.

7. Construction of optimal solutions and exemplary results
The numerical method for constructing the optimal isotropic material and cubic material designs is based on
solving problem (4) with integrands defined by appropriate norms for the trial stress fields. The numerical method
has been developed in [4, 5, 6]; it is based on discretization of the set of statically admissible stresses. This
linear affine set is represented by the solution of the discretized equilibrium equations with using the singular
value decomposition technique (SVD). The free parameters of the representation are determined by performing
minimization in the discretized counterpart of (4); for the details the reader is referred to [5]. The aim of the
present section is to show only exemplary results: the optimal layouts of isotropic moduli found by the IMD
technique outlined in Sec.6.
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Figure 1: Dimensions of the girder considered

Consider the girder of dimensions 3.60 x 0.60 [m] lying on two non-sliding point supports, see Fig.1.
A uniformly distributed vertical load of intensity q = 1.0 [N/m] is applied along the upper edge. The design

cost Λ , see (3), is assumed as equal to E0|Ω|, where Ω represents the area of the design domain. The modulus
E0 is assumed as equal 1.0 [N/m], the optimal values of the designed elastic moduli being proportional to E0 , see
(25). Two optimal designs are constructed: a) for the rectangular design domain without openings, and: b) for the
design domain with six hexagonal openings, as shown in Fig.1. The scatter plots of the Young modulus E∗ and

Figure 2: The layouts of Young modulus E∗ and Poisson ratio ν∗ in optimal isotropic girders: without openings
(case a) and with openings (case b).

Poisson ratio ν∗ of the optimal non-homogeneous isotropic material within the girder domain for both cases a) and
b) are shown in Fig. 2. The results have been found with using the bilinear, isoparametric C2D4 finite elements,
applied for the approximation of the stress fields. In case (a) the mesh of 5400 elements has been used, in case (b)
the number of elements being equal 4555.

For the rectangular design domain the optimal material forms a characteristic arch. The presence of openings
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brings about creation of stiffenings tangent to the openings, a characteristic feature of available optimal solutions
to the scalar Monge-Kantorovich problem, see [3].

A characteristic property of the solution presented is emergence of the domains where the optimal Poisson
ratio attains its lower and upper bounds. In the 2D setting these bounds are: -1 and 1, while in the 3D case they are
tighter: -1, 1/2. In the 2D case considered we expect the former bounds. Note that in domains shown in the purple
color the optimal layout of Poisson ratio reaches its lower bound equal to -1. In contrast, the red color indicates
the domain where the Poisson ratio reaches its upper bound being equal to 1. Let us note lastly that in case of 3D
optimal solutions constructed by the IMD method both the bounds : -1 and 1/2 are reached in typical optimal 3D
designs [6]; selected 3D optimal solutions will be presented during the Conference.

8. Concluding remarks
The three versions of the material design considered come down to the problem (4) with different norms ‖.‖. To
make this problem well posed one should sought the minimizer in the space of measures, as stressed in the paper
[3] on shape optimization. The support of the minimizer determines the shape of the optimal body. Thus the
material and shape optimizations are indissolubly bonded.

Optimum anisotropy becomes singular unless the strongest assumption of isotropy is imposed. The optimal
isotropic bodies exhibit auxetic properties for majority of possible loads.
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[3] G. Bouchitté, G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equa-
tion, Journal of European Mathematical Society 3, 139168, 2001.
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