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1. Abstract
A topology optimization approach is presented to design structures with strict minimum length scale. The idea is
inspired from the work on topology optimization with robustformulations [1, 2, 3], where the optimized nominal
design possess minimum length scale if all the considered design realizations in the problem formulation share a
consistent topology. However, the latter condition may notbe satisfied depending on physical problems [2]. In
the current study, two differentiable geometric constraints are formulated based on a filtering-threshold modeling
scheme. Satisfying the constraints leads to designs with controllable minimum length scale on both solid and void
phases. No additional finite element analysis is required for the constrained problem. Conventional topology opti-
mization can be easily extended to impose minimum length scale on the final design with the proposed constraints.
Numerical examples of designing a compliant mechanism and aslow-light waveguide are presented to show the
effectiveness of this approach.
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3. Introduction
There has been tremendous interest in prototyping topologically optimized designs without the tedious post-
processing in CAD softwares, thanks to the boosting macro- /micro- 3D printing technology. On the side of
topology optimization, the optimized design must contain no single structural member whose size is below the
resolution of a 3D printer in order to avoid prototype deficiency, such as holes or disconnected parts. One solution
is to achieve minimum length scale in the topology optimization results. Another benefit of doing so is that, if a
compliant mechanism is designed achieving minimum length scale helps guarantee a longer device life-time by
preventing tiny-hinges appearing at structural joints (high-stress regions).

Previous attempts have been made to impose minimum length scale in topology optimization. Within the
density-based approach [4], Poulsen proposed the so-called MOLE (MOnotonicity based minimum LEngth scale)
method [5], which achieves minimum length scale larger thanthe size of a circular “looking glass”. Guest [6]
suggested projection schemes by projecting the nodal density into the element space of a minimum feature size.
However, it does not resolve the “one-node hinge” problem indesigning compliant mechanisms and simple projec-
tion may result in grey scale for some design problems [1]. The robust formulations [1, 2, 3], which take the eroded,
dilated and (one or several) intermediate design realizations into account at the same time, impose length scale on
the intermediate blueprint design only if the considered design realizations share the same topology. However, as
pointed out in [2], the robust formulation does not necessarily guarantee a consistent topology for the realizations
in different physical problems and the length scale can onlybe checked a posteriori. Another drawback of using
a robust formulation is the high computational cost, that finite analysis is basically required for each design re-
alization in every iteration. A perturbation based technique [7] proposed by Lazarov et. al is a computationally
efficient solution. However, due to the locality of the approximation, it cannot provide a clear length scale control
for compliant mechanism problems. Recently, a skeleton-based idea, which is similar to that in [8] with the level
set method, is implemented using a density based method in [9]. Both minimum and maximum length scale are
considered in their works [8, 9]. However, the sensitivity regarding the change of the medial-zone is neglected in
the sensitivity analysis. Possible shortcomings of this approach are discussed in detail in [10]. Within the level set
based method [11], Chen et al. [13] applies a quadratical energy functional to design a thin elongated structural
layout with length scale. However, there is no explicit way to define the exact length scale with this formulation.
A rigorous mathematic approach for imposing minimum and maximum length scale in level set based topology
optimization is proposed in [10, 12]. Besides the above approaches, predefined engineering features with length
scale can be designed and optimized using a CSG based level set approach as discussed in [14]. Another op-
tion is to directly consider the manufacturing characteristics in the optimization process, which can always ensure
manufacturable designs of optimized performance [15, 16].
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Figure 1: Re-designing a filtered field (from the solid to the dashed curve) to satisfy the conditions(i)− (ii)
according to Eqs. (1) and (2). Minimum length scale is achieved on the physical field thresholded byηi for the
dashed curve.

In this study, a new approach is proposed based on a filtering-threshold topology optimization scheme [17],
which utilizes a design fieldρ (0 ≤ ρ ≤ 1), a filtered design field̃ρ and a projected (physical) field̄ρ. The
idea is inspired from the work on topology optimization withrobust formulations [1, 2, 3], where the optimized
nominal design possess minimum length scale if all the considered design realizations̄ρη thresholded in a range
η ∈ (ηd ,ηe) (0< ηd < ηi < ηe < 1) share a consistent topology. One sufficient condition to the latter is as follows:

(i) ρ̃(x)≥ ηe, ∀x ∈ Ω1 = {x|ρ̄ηi(x) = 1 and∇ρ̃ = 0}; (1)

(ii) ρ̃(x)≤ ηd , ∀x ∈ Ω2 = {x|ρ̄ηi(x) = 0 and∇ρ̃ = 0}; (2)

whereΩ1 andΩ2 represent the inflection region of the filtered field in the solid and void phase of the physical
field, respectively. Fig. 1 illustrates this idea with a 1D example. The solid curve represents an initial filtered field,
for which the physical fields thresholded atηd ,ηi,ηe possess different topologies. Re-designing it into the dashed
curve as shown in the figure to satisfies(i) and(ii), a solid phase is ensured inΩ1 for all the physical realizations
thresholded byη < ηe and a void phase remains inΩ2 within η > ηd . As a result, all the physical realizations
thresholded byη ∈ (ηd ,ηe) share a consistent topology and minimum length scale is expected on the blueprint
designρ̄ηi for both solid and void phases. In this work, two geometric constraints are proposed to meet the above
condition. By solving a constrained optimization problem,minimum length scale is realized without additional
finite analysis, which alleviate the computational burden of using a robust formulation. This approach is purely
geometrical and problem independent. Existing topology optimization framework can be easily extended to have
minimum length scale in final optimized design by incorporating the proposed geometric constraints.

4. Geometric constraints for minimum length scale
The filtering-threshold topology optimization scheme [17]consists of a design fieldρ , a filtered fieldρ̃ and a
physical fieldρ̄ , whose relations are defined as follows:

ρ̃i =
∑ j∈Ni

ω(x j)v jρ j

∑ j∈Ni
ω(x j)v j

, ω(x j) = R−|xi− x j|, (3)

ρ̄i =
tanh(β ·η)+ tanh(β · (ρ̃i −η))
tanh(β ·η)+ tanh(β · (1.0−η))

. (4)

whereNi is the set of elements in the filter domain of the elementi, R is the radius of the filter,v j is the volume of
the elementj, β controls the steepness of the approximated Heaviside function andη is the threshold.

In order to fulfill the two requirements in Eqs. (1) and (2), two structural indicator functions are first defined to
capture the inflection regionsΩ1,Ω2 defined in Eqs. (1-2):

Is = ρ̄ · exp(−c · |∇ρ̃|2), (5)

Iv = (1− ρ̄) · exp(−c · |∇ρ̃|2), (6)

where the subscriptss andv stand for the solid and void phase, respectively. The exponential term in Eqs. (5)
and (6) annotates the inflection region of a filtered field (|∇ρ̃| = 0) with value 1, while the parameterc controls
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the decay rate ofIs andIv wherever|∇ρ̃| 6= 0. Because of numerical errors in calculating the gradient value (∇ρ̃),
the parameter cannot be set arbitrarily large. Numerical experience implies that settingc = r4 (wherer = R/h
andh represents the element size) is effective in practice in capturing the inflection region during the optimization
process. Based on the indicator functions, the geometric constraints are proposed as:

gs =
1
n ∑

i∈N
Is
i · [min{(ρ̃i −ηe) , 0}]2 = 0, (7)

gv =
1
n ∑

i∈N
Iv
i · [min{(ηd − ρ̃i) , 0}]2 = 0, (8)

wheren is the total number of elements. Satisfying these two constraints results in the value of the filtered field
being larger than the thresholdηe at the inflection regionΩ1 and smaller than the thresholdηd at Ω2. Therefore,
the sufficient condition is satisfied and minimal length scale is expected over the nominal design. The proposed
geometric constraints are differentiable w.r.t. the design variableρ and computationally cheap. They can be
obtained from the value of the physical field̄ρ, the filtered fieldρ̃ and its gradient∇ρ̃, which are directly available
during the optimization process.

In practice, the equality constraints Eqs. (7-8) cannot be strictly satisfied due to numerical errors. It is pertinent
to apply an relaxed version to a topology optimization problem:

min : F(u(ρρρ),ρρρ),
s.t. : g j ≤ 0, j = 1 : m,

: gs ≤ ε,
: gv ≤ ε,
: 0≤ ρρρ ≤ 1.

(9)

whereF andg j are the objective functional and constraints of the original problem respectively andε is a small
number. The minimum length scale on the final result is determined by the radius of the filter, the considered
threshold range(ηd ,ηe) and the thresholdηi for the blueprint design. Readers are referred to [2, 18] forpredicting
the minimum length scale using the linear-hat based filtering.

5. Numerical Examples
In this section, the proposed approach is applied to two benchmark examples. The constrained problem (9) is
solved by the method of moving asymptotes (MMA) [19].

The first example is to design a compliant inverter with minimum length scale. The optimization problem is
to maximize the output displacement, of which the directionis opposite to that of the external force. The detailed
problem formulation and parameter definitions can be found in [2]. Fig. 2(a) shows a standard topologically
optimized inverter containing tiny hinges at structural joints. The tiny hinges will cause high stress when the
mechanism deforms and thus they shall be prevented in the blueprint design. Fig. 2(b,c) shows two such im-
proved designs by applying the proposed geometric constraints. Different minimum length scales are achieved by
adopting different threshold ranges(ηd ,ηe) = (0.4,0.6) and(0.3,0.7), respectively. As the minimum length scale
increases, the deforming capability (the absolute displacement) of the inverter reduces fromF = 3.81 to 3.61. In
this example, the design domain is discretized into 150×300 quadrilateral elements and the following parameters
are implemented:E0 = 1, Emin = 10e−9,V ∗ = 0.2, kin = 0.2, kout = 0.005 andr = 10 elements.

(a) F = 3.81 (b) F = 3.77 (c) F = 3.61

Figure 2: Optimized compliant mechanisms with different minimum length scale: (a) without length scale control,
containing tiny hinges at structural joints; (b) with minimum length scale (equals to the size of the dashed and solid
circles), considered threshold rangeη ∈ (0.4,0.6); (c) η ∈ (0.3,0.7).
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Figure 3: Optimized slow light waveguide by using both a robust formulation and geometric constraints. (a) the
waveguide composed of 8 repeated cells; (b) contours in a single cell, the blueprint (in black bold lines), dilated (in
blue dashed lines) and eroded design realization (in red dash-dotted lines); (c) performance of different realizations.

The second problem studies the design of a dispersion engineered slow light waveguide, which is obtained by
minimizing the errors between actual group indexng and a prescribed group indexn∗g = 25 in a given wavenum-
ber rangek ∈ [0.3875, 0.4625] · 2π/a, wherea is the width of the single cell shown in Fig. 3(b). The original
problem formulation can be found in [20]. It is known that using a robust formulations cannot always guarantee
the same topology for all the considered design realizations [20]. Here, by incorporating the proposed geometric
constraints into the robust formulation, Fig. 3(a) shows the new optimized result containing 8 cells, in which
minimum length scale in both solid and void phases are clearly identified. As shown in Fig. 3(b), the contours
of the eroded, blueprint and dilated designs indicate a sametopology. Equally optimized performance is achieved
for the considered three designs as shown in Fig. 3(c). However, because the robust formulation here only takes
three designs into account, the other intermediate realizations (e.g.η = 0.45,0.55) still do not behave as well as
the blueprint. This issue may be alleviated by including more realizations in the formulation. In this example, the
design domain (one cell) is discretized into a 512× 32 quad mesh. The following parameters are implemented:
filter radiusr = 3.75 elements,ηd = 0.35,ηi = 0.5 andηe = 0.65,ε = 10−6 andβ = 50.

6. Conclusions
This paper introduces a novel approach to control minimum length scale in topology optimization results by us-
ing geometric constraints. Two numerical examples from different physical problems are presented to show the
general applicability of this approach. Further investigations will be carried out on extending the current idea into
maximum length scale control.
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