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1. Abstract

A topology optimization approach is presented to desigicsires with strict minimum length scale. The idea is
inspired from the work on topology optimization with robéstmulations [1, 2, 3], where the optimized nominal
design possess minimum length scale if all the considersigdeealizations in the problem formulation share a
consistent topology. However, the latter condition may beisatisfied depending on physical problems [2]. In
the current study, two differentiable geometric constsaare formulated based on a filtering-threshold modeling
scheme. Satisfying the constraints leads to designs withr@itable minimum length scale on both solid and void
phases. No additional finite element analysis is requirethiconstrained problem. Conventional topology opti-
mization can be easily extended to impose minimum lengtle ezathe final design with the proposed constraints.
Numerical examples of designing a compliant mechanism asidvelight waveguide are presented to show the
effectiveness of this approach.
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3. Introduction

There has been tremendous interest in prototyping topoadigi optimized designs without the tedious post-
processing in CAD softwares, thanks to the boosting macmicfo- 3D printing technology. On the side of
topology optimization, the optimized design must containsingle structural member whose size is below the
resolution of a 3D printer in order to avoid prototype defitig such as holes or disconnected parts. One solution
is to achieve minimum length scale in the topology optimaatesults. Another benefit of doing so is that, if a
compliant mechanism is designed achieving minimum leng#theshelps guarantee a longer device life-time by
preventing tiny-hinges appearing at structural jointglik$tress regions).

Previous attempts have been made to impose minimum length sBttopology optimization. Within the
density-based approach [4], Poulsen proposed the saldaltd E (MOnotonicity based minimum LEngth scale)
method [5], which achieves minimum length scale larger tthensize of a circular “looking glass”. Guest [6]
suggested projection schemes by projecting the nodaltgentd the element space of a minimum feature size.
However, it does not resolve the “one-node hinge” probledeisigning compliant mechanisms and simple projec-
tion may resultin grey scale for some design problems [1§ fbust formulations [1, 2, 3], which take the eroded,
dilated and (one or several) intermediate design readizatinto account at the same time, impose length scale on
the intermediate blueprint design only if the consideresigierealizations share the same topology. However, as
pointed out in [2], the robust formulation does not necdlysguarantee a consistent topology for the realizations
in different physical problems and the length scale can belghecked a posteriori. Another drawback of using
a robust formulation is the high computational cost, thatdianalysis is basically required for each design re-
alization in every iteration. A perturbation based techeifj7] proposed by Lazarov et. al is a computationally
efficient solution. However, due to the locality of the appnoation, it cannot provide a clear length scale control
for compliant mechanism problems. Recently, a skelet@meéhddea, which is similar to that in [8] with the level
set method, is implemented using a density based method.iBfh minimum and maximum length scale are
considered in their works [8, 9]. However, the sensitivegarding the change of the medial-zone is neglected in
the sensitivity analysis. Possible shortcomings of thigragch are discussed in detail in [10]. Within the level set
based method [11], Chen et al. [13] applies a quadraticabgrfenctional to design a thin elongated structural
layout with length scale. However, there is no explicit waydefine the exact length scale with this formulation.
A rigorous mathematic approach for imposing minimum and imaxn length scale in level set based topology
optimization is proposed in [10, 12]. Besides the above @gghies, predefined engineering features with length
scale can be designed and optimized using a CSG based I¢\am®ach as discussed in [14]. Another op-
tion is to directly consider the manufacturing charactessn the optimization process, which can always ensure
manufacturable designs of optimized performance [15, 16].
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Figure 1: Re-designing a filtered field (from the solid to trestied curve) to satisfy the conditio(i$ — (ii)
according to Egs. (1) and (2). Minimum length scale is adkdeon the physical field thresholded Qyfor the
dashed curve.

In this study, a new approach is proposed based on a filt¢hireghold topology optimization scheme [17],
which utilizes a design fielgh (0 < p < 1), a filtered design fielgp and a projected (physical) field. The
idea is inspired from the work on topology optimization witstbust formulations [1, 2, 3], where the optimized
nominal design possess minimum length scale if all the cemet design realization, thresholded in a range
n € (ng,ne) (0< ng < Ni < ne < 1) share a consistent topology. One sufficient conditiohédatter is as follows:

(i) P(X)=>ne, Vxe€Qi={x|py(x)=1anddp =0}; 1)

(i) B(x) <ng, VxeQz={x|py(x)=0 anddp =0}; )

whereQ; andQ, represent the inflection region of the filtered field in thedsaind void phase of the physical
field, respectively. Fig. 1 illustrates this idea with a 1[ample. The solid curve represents an initial filtered field,
for which the physical fields thresholdedrgt, ni, ne possess different topologies. Re-designing it into thénelds
curve as shown in the figure to satisfigsand(ii), a solid phase is ensured@ for all the physical realizations
thresholded by) < ne and a void phase remains @ within n > ng. As a result, all the physical realizations
thresholded by; € (ng, ne) share a consistent topology and minimum length scale isatagden the blueprint
designpy, for both solid and void phases. In this work, two geometriestraints are proposed to meet the above
condition. By solving a constrained optimization probleminimum length scale is realized without additional
finite analysis, which alleviate the computational burdénsing a robust formulation. This approach is purely
geometrical and problem independent. Existing topolodgintipation framework can be easily extended to have
minimum length scale in final optimized design by incorpmmgthe proposed geometric constraints.

4. Geometric constraintsfor minimum length scale
The filtering-threshold topology optimization scheme [t@hsists of a design field, a filtered fieldp and a
physical fieldo, whose relations are defined as follows:

~  Yjen W(X))Vjpj
2N QGNP
EjENi w(XJ)VJ

5 tantBn)+tank(p- (5 —n)) @
tanh(B-n)+tanh(B-(1.0—n))
whereN; is the set of elements in the filter domain of the elemgRts the radius of the filtew; is the volume of
the elementi, 3 controls the steepness of the approximated Heavisideifumahdn is the threshold.
In order to fulfill the two requirements in Egs. (1) and (2)ptstructural indicator functions are first defined to
capture the inflection regiort®;, Q, defined in Egs. (1-2):

;o w(Xj) =R—xi —Xjl, 3)

1= p-exp(—c-|0pP), (®)

IV=(1-p)-exp(—c:|0p[%), (6)

where the subscriptsandv stand for the solid and void phase, respectively. The expitadderm in Egs. (5)
and (6) annotates the inflection region of a filtered fieldd| = 0) with value 1, while the parametercontrols



the decay rate dff andlV wherevel(p| # 0. Because of numerical errors in calculating the gradiehter(1p),
the parameter cannot be set arbitrarily large. Numericaeggnce implies that setting= r* (wherer = R/h
andh represents the element size) is effective in practice itucaqy the inflection region during the optimization
process. Based on the indicator functions, the geometnistaaints are proposed as:

95:% IS [min{ (B — ne), 0}2 =0, )

'~ 5 3 1V [min{ (145, 0} =0 Q

wheren is the total number of elements. Satisfying these two caimgs results in the value of the filtered field
being larger than the threshaid at the inflection regiof®2; and smaller than the threshald at Q,. Therefore,
the sufficient condition is satisfied and minimal length edalexpected over the nominal design. The proposed
geometric constraints are differentiable w.r.t. the desigriablep and computationally cheap. They can be
obtained from the value of the physical figddthe filtered fieldd and its gradienflp, which are directly available
during the optimization process.

In practice, the equality constraints Egs. (7-8) cannotiietly satisfied due to numerical errors. It is pertinent
to apply an relaxed version to a topology optimization peotul

min : F(u(p).p),
s.t.: 0; <0, j=1:m,
g°<e, ©)
g'<eg,
0<p<Ll

whereF andg; are the objective functional and constraints of the origgmablem respectively and is a small
number. The minimum length scale on the final result is ddtexchby the radius of the filter, the considered
threshold rangényg, ne) and the threshold; for the blueprint design. Readers are referred to [2, 18pfedicting
the minimum length scale using the linear-hat based filgerin

5. Numerical Examples
In this section, the proposed approach is applied to two lr@ack examples. The constrained problem (9) is
solved by the method of moving asymptotes (MMA) [19].

The first example is to design a compliant inverter with mimimlength scale. The optimization problem is
to maximize the output displacement, of which the directgopposite to that of the external force. The detailed
problem formulation and parameter definitions can be foumfR]. Fig. 2(a) shows a standard topologically
optimized inverter containing tiny hinges at structurahfe. The tiny hinges will cause high stress when the
mechanism deforms and thus they shall be prevented in tlepiit design. Fig. 2(b,c) shows two such im-
proved designs by applying the proposed geometric consdrdbifferent minimum length scales are achieved by
adopting different threshold rangégy, ne) = (0.4,0.6) and(0.3,0.7), respectively. As the minimum length scale
increases, the deforming capability (the absolute digplat) of the inverter reduces frdm= 3.81 to 361. In
this example, the design domain is discretized into 2300 quadrilateral elements and the following parameters
are implementedEg = 1, Ejin = 10e—9,V* = 0.2, kip = 0.2, kot = 0.005 andr = 10 elements.

(a) F =381 (b) F =3.77 (c) F =361

Figure 2: Optimized compliant mechanisms with differenhimium length scale: (a) without length scale control,
containing tiny hinges at structural joints; (b) with minim length scale (equals to the size of the dashed and solid
circles), considered threshold ranges (0.4,0.6); (c) n € (0.3,0.7).
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Figure 3: Optimized slow light waveguide by using both a tdormulation and geometric constraints. (a) the
waveguide composed of 8 repeated cells; (b) contours ingdestell, the blueprint (in black bold lines), dilated (in
blue dashed lines) and eroded design realization (in rdu-dated lines); (c) performance of different realization

The second problem studies the design of a dispersion esrgidislow light waveguide, which is obtained by
minimizing the errors between actual group inaig>and a prescribed group indeg = 25 in a given wavenum-
ber rangek € [0.3875 0.4625 - 211/a, wherea is the width of the single cell shown in Fig. 3(b). The oridina
problem formulation can be found in [20]. It is known thatngsia robust formulations cannot always guarantee
the same topology for all the considered design realizatjafi]. Here, by incorporating the proposed geometric
constraints into the robust formulation, Fig. 3(a) showes tiew optimized result containing 8 cells, in which
minimum length scale in both solid and void phases are glédentified. As shown in Fig. 3(b), the contours
of the eroded, blueprint and dilated designs indicate a sapwdogy. Equally optimized performance is achieved
for the considered three designs as shown in Fig. 3(c). Hewéecause the robust formulation here only takes
three designs into account, the other intermediate reé@mira(e.g.n = 0.45,0.55) still do not behave as well as
the blueprint. This issue may be alleviated by including en@alizations in the formulation. In this example, the
design domain (one cell) is discretized into a 5122 quad mesh. The following parameters are implemented:
filter radiusr = 3.75 elementsy)g = 0.35,1; = 0.5 andne = 0.65,& = 108 and = 50.

6. Conclusions

This paper introduces a novel approach to control minimungtle scale in topology optimization results by us-
ing geometric constraints. Two numerical examples frorfedt physical problems are presented to show the
general applicability of this approach. Further invedimas will be carried out on extending the current idea into
maximum length scale control.
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