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1. Abstract
In many practical engineering designs, the forms of objective functions are not easily available in terms of the
design variables. So as to obtain relatively accurate optimal solutions, a lot of computing iterations must be taken
into account, which results in huge computational consumption. A parallel optimization method based on Kriging
model is proposed in this paper: by developing entropy-based expected improvement algorithm on the Kriging
model, this approach progressively provides a designer a rich and evenly distributed set of Pareto optimal points;
meanwhile the implementation of the method proposed on a super-server is discussed, with speedup and efficiency
described by statistical data. Two mathematical optimization problems and two engineering optimization problems
are presented as testing cases, with the results showing that the proposed method can be effectively used for engi-
neering optimization designs. The method developed in thispaper could help the designers to search and compare
near optimal design alternatives intelligently in the early design stages by utilizing high performance computing
resources.
2. Keywords: expected improvement, engineering optimization, Krigingmodel

3. Introduction
Optimization refers to finding the values of decision variables, which correspond to and provide the maximum or
minimum of one or more desired objectives. Problems may arise in engineering optimization at present: 1) The
physical and mathematical models for multidiscipline fieldare complicated to be optimized directly, so that some
general analysis programs, such as Ansys, Abaqus, Fluent, Moldflow, etc, have been used as black-box programs,
how to develop the efficient optimization methods based on these black-box programs; 2)High performance com-
puting that began to appear in the late 1970s and continue to undergo rapid development, how to solve a complex
optimization problem by using advanced computing infrastructure efficiently [1-3]. Physical and mathematical
models are hard to describe explicitly under normal engineering optimization situations, which makes “black-
box optimization” a very effective way in solving these problems. This “only-use-function-values” optimization
method is hailed as “the most useful algorithm” [4].
In this paper, a parallel optimization method based on Kriging model is developed. By weighted coefficient method
of multi-objective optimization, an evenly and rich distributed set of Pareto solutions can be provided, in which a
Pareto point obtained by optimizing weighted coefficient–with entropy-based expected improvement (EEI) algo-
rithm. To make the method well performed within parallel computing environment, the parallel strategy is given.
Test cases are developed, with numerical data showing that the proposed method not only effectively gives more
precise optimal solutions through EEI algorithm but accelerates the whole optimization process using parallel s-
trategy at the same time.

4. Related Work
4.1. “Black-box Optimization”
A typical “black-box optimization” process performed in this article is be defined as: 1) Use sampling method
(Latin hypercube sampling (LHS) [5], for example) to get a set of fairly well-distributed samples which are con-
sistent with the limits of the design variables; 2) Compute the responses of all the samples using a black-box
analysis program; 3) Try to set up a proximate model between the design variables and the responses so as to ana-
lyze the system features; 4) Calculate the optimal solutionof the objective function under the approximation model
established before with an appropriate sampling guidance function such as EI method; 5) Convergence analysis: if
the optimal solution has met the given accuracy then stop; Otherwise, put the optimal solution into the sampling
set as a new sample and go to step 2) [6].
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4.2. Kriging Model
Samples mentioned above can be used as input data for “black-box optimization” and their responses would be
acquired after necessary calculations performed by black-box analysis software. With samplesX = [X1,X2, . . . ,Xn]
and their responsesy, Kriging model can be established as [7,8]:

ŷ(X) = f T(X)β + z(X) (1)

coefficientβ is the regression ratio. Deterministic driftf (X), provided the global approximation of simulation in
the design domain, is often described as a polynomial ofX . z(X), known as fluctuation, offers the local approxi-
mation of simulation.

4.3. Expected Improvement
Expected Improvement (EI) criterion is a sampling guidance function which considersboth the predicted value
and the predicted variance while infilling a sample into the optimization models. To a new sampleX , the Kriging
model can predict its average value ¯y(X) and its average varianceσ2. Let ymin be the current minimum response
value, thereforeI (lets assume that it is a minimization problem andy(X) = ymin − I) will be the improvement of
the response value at the given point.I is normally distributed with mean ¯y(X) and varianceσ2. The likelihood of
this improvement is given by the normal density function [9]:
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)2

2σ2(X)

]

}

dI (3)

using integration by parts, one can show that

E
[

I(X)
]

= σ(X)
[

vΦ(v)+ϕ(v)
]

,v =
ymin − ȳ(X)
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whereΦ andϕ are the normal cumulative distribution function and density function, respectively.
5. Developed Methodology
5.1. Entropy-based Expected Improvement
In order to facilitate parallel computing, entropy-based expected improvement (EEI) is developed to optimize the
infilling samples in the design space. The optimization of the weighted expected improvement (WEI) can be
written as

max E
(

I(X)
)

=
2

∑
j=1

λ jEj
(

I(X)
)

(5)

and














E1
(

I(X)
)

= Φ(v)
(

ymin − ȳ(X)
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Shannon entropy can be introduced to measure the uncertainty about the searching range. Ifλ j ∈ [0,1] are here
defined as a probability that the optimal solution occurs in the local space and other space, respectively, then the
Shannon entropy will be decreased during optimization process of Eq.5 and an entropy-based optimization model
for the optimizing weighting coefficient can be constructedas
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whereH is the information entropy. It can easily be proved that Eq.5and Eq.7 having the same optimal solutions.
By Lagrange multiplier method, an augmented function can beobtained as
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whereη andµ are the weighting coefficient of multi-object optimizationand Lagrange multiplier, respectively.
Solving Kuhn-Tucker condition Eq.9 as follows
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in whichr = (η −1)/η is called as the quasi-weighting coefficient (hereη = 0.5). λ ∗
j is here called as the optimal

weighting coefficient. Then a Pareto optimal sample can be obtained by solving Eq.5 with the optimal weight
coefficientλ ∗

j of Eq.10. For a specific weight coefficientλ j ∈ [0,1], the optimization scheme stops when

E
[

I(X)
]

ymax − ymin
≤ ε1 (11)

whereε1 is the stopping tolerance,ymax andymin are the maximal and minimal function value in samples, respec-
tively. Then considering the accuracies of both Kriging model and optimization simultaneously, besides Eq.11 the
convergence condition of Eq.12

| f (Xn)− ŷn|
f (Xn)

≤ ε2 (12)

should be satisfied too. Where,ε1 andε2 are given errors (here takeε1 = ε2 = 0.01),ŷn is the approximate response
value of the Kriging surrogate model.

5.2 A Parallel Strategy of EEI on Super Servers
It is assumed here thatp cores can be used for the computation on super servers, and the parallel algorithm is
described as follows

Step.1. Generate a set ofNs samples (each point corresponding to a group design variables) using LHS. Divide
the Ns samples intop parts, which used as input data for black-box analysis programs, the firstp−1 cores get
⌈Ns/p⌉ samples, the last core gets the remaining samples;

Step.2. Compute the responses of the samples using black-box program on each core respectively;
Step.3. Build a Kriging surrogate model between the sample sets and their corresponding output response

values;
Step.4. Solve the maximizing problems of Eq.5 by thep cores, in which the weighted parameter ofλ1 is

obtained by Eq.10 andλi = (i−1)/p, i = 2,3, . . . , p for the rest of the computing cores;
Step.5. Compute the responses of the samples after step 4 is accomplished by using same black-box program;
Step.6. Check convergence. If the convergence criteria Eq.11 andEq.12 are satisfied then stop, the opti-

mization solution is obtained; Put new samples and their responses into the sampling set and the responding set
respectively, redirect to step 3.

6. Test Cases
6.1 Math problems
In this section, the results for some classic mathematical problems are presented. For all of the problems, LHS is
used and the numberNs of initial samples is 10, available computing coresp is 4.

6.1.1 Ackley Function
Ackley function is widely accepted by form of:

F(x1,x2) =−2exp(−0.2
√

x2
1+ x2

2)−exp((cos(2πx1)+

cos(2πx2))+2+exp(2),(x1,x2) ∈ (−1.5,1.5)
(13)
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theoretically, the minimum value of Ackley function is 0 at (0,0). The iteration histories of Ackleys problem are
shown in Fig. 1. The optimal value 0(0,0) is obtained after 33iterations of WEI method and 10 iterations of EEI
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Figure 1: Iteration histories of Ackley problem

method, respectively.

6.1.2 Branin Function
Branin function is defined as:

F(x1,x2) = (x2−5.1x2
1/(4π2)+5x1/π −6)2+10(1−0.125/π)cos(x1)+10,

x1 ∈ [−5,10.0],x2 ∈ [0,15.0]
(14)

its optimal solution is 0.3979 at point (-3.1416, 12.28). Iteration histories of this problem is shown in Fig. 2.
The optimization value 0.784(9.342, 3) is obtained by WEI method after 16 iterations and 0.5031(-3.271, 12.75)
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Figure 2: Iteration histories of Branin problem

obtained by EEI method after 6 iterations. Method of EEI has given a more precise solution which is closer to the
optimal solution should be in theory.

6.2 Optimization Problem of Turbine Foundation
A turbine foundation is normally a concrete base for turbinegenerators. The turbine foundation optimization
(TFO) problem can be described as:

minF(X) = minF(Xs,Xg)
T = min fl(Xs,Xg)

T

s.t.
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(15)

where,X = (Xs,Xg) stands for design variables:Xs is a size design vector withI beam section areas,Xg is geometry
design vector withJ columns node coordinates,xi

s , x̄i
s andxi

g , x̄i
g represent section and geometry limits,i and j

are defined as variable numbers; hereL = 2, f1 and f2 are separately defined as amplitude computed by black-box
analysis program (here Ansys software is used) dividing current average amplitude and construction weight (a
linear function of the section areas) dividing current average weight of the foundation;uq(X) is the amplitude of
the points concerned;Q is the number of points concerned; ¯uq is the maximum amplitude of the foundation;P(t)
is disturbing force of the generator. TFO is a multi-objective engineering optimization problem. By means of the
weighted coefficient method for solving multi-objective optimization, a weighted parameterω to unify amplitude
and weight to one objective function in order to reduce the complexity of modeling using Kriging method in
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Table 1: Speedup and efficiency of test cases

Test Case WEI EEI
Speedup Efficiency(%) Speedup Efficiency(%)

6.1.1 3.243 81.075 3.333 83.325
6.1.2 3.332 83.300 3.320 83.000
6.2.1 3.259 81.475 3.350 83.750
6.2.2 3.351 83.775 3.299 82.475

engineering practice. In this article,ω is defined as 0.5 for considering both structural weight and the amplitude at
the same level. Therefore shouldF(X) becomeF(X) = 0.5 f1(X)+0.5 f2(X) by now.
6.2.1 A 600MW Turbine Foundation Example
There are 15 size design variables and a geometry design variable for this example. The iteration histories are
available in Fig. 3.
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Figure 3: Iteration histories of the 600MW turbine foundation

Fig. 3 gives that iterations of EEI (10 optimization steps atoptimal solution ofF(X) = 1.27) is less than WEI (29
optimization steps at optimal solution ofF(X) = 1.28).

6.2.2 A 300MW Turbine Foundation Example
There are 17 size design variables and two geometry design variables for this example. Fig. 4 and has described
the iteration processes.
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Figure 4: Iteration histories of the 300MW turbine foundation

According to Fig. 4, optimization iterations needed by EEI method (4 steps) is less than WEI method (13 steps);
meanwhile WEI method has also got a not so good optimization result (F(X) = 1.92) than EEI (F(X) = 1.83),
which is a very huge effort for this problem as a 0.1 more less of the objective function would gain nearly about
105kg saving of the foundations construction of weight consume.

6.3 Speedup & efficiency statistic data for test cases
Table 1 has given the characteristics belonging to all the test cases including speedup and efficiency using the
parallel strategy discussed in 5.2.
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6.4 Results analysis & discussion
As can be seen from the above figures, the developed EEI methodcan normally calculate better optimization
solutions and WEI method (and also EI method, obviously). This is a behavior caused by a reasonable weighted
parameter is given while doing the optimization, which stands for a correct and direct way for searching final
optimal solutions generally. A better solution always means better objective function values, which indicates great
construction cost savings and better other related engineering technical indicators are obtained.
An ordinary way to save time cost while doing optimization must be making it into parallel pattern. Reading from
Table 1, both WEI and EEI methods have expressed high speedupand efficiency for all test cases. This is very
simple to comprehend that black-box optimization has established based on Kriging models: black-box programs
are scheduled without too much correspondence to each otherhenceforth a much more considerable speedup could
be made. Using the parallel strategy proposed above, engineering optimization problems can be estimated to be
performed in a quicker mode.

7. Conclusion
This paper has developed an improved expected improvement method called entropy-based expected improvement
(EEI) method, adapting to address computing-intensive optimization problems. It is based on black-box optimiza-
tion method and global Kriging models. An optimal weighted parameter is calculated at each iteration, which
is used for sampling guidance next iteration: it has similarprocess steps to normal WEI method but gives more
accurate solutions under normal circumstances. A parallelstrategy described as responses computed by different
computing cores with black-box programs has been successfully implemented on a super server to deal with the
problem encountered when EEI method needs to consider several samples and points at the same iteration, which
could get large speedup and efficiency for engineering problems due to black-box optimizations manifest excellent
character to be paralleled.
In order to verify the effectiveness of the proposed method,several examples consist of both math and engineering
problems are developed. Numerical results have demonstrated that the raised method could get good speedup
and better optimal solutions simultaneously, which surelygives an advance in parallel engineering optimization.
We hope the method discussed may further be used in other related engineering optimization problems due to the
common behaviors in black-box optimization as to ease the cost made by all of them.
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