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1. Abstract
A level set method is developed for the representation of multiple types of boundaries, and it is applied in two
structural shape and topology optimization problems. The first problem is the optimization of both structure and
support, where both the homogeneous Neumann boundary and the Dirichlet boundary are optimized. The second
problem is the optimization of structures subjected to pressure load, where both the non-homogeneous and homo-
geneous Neumann boundaries are optimized. In order to address the issue that how to represent different types of
boundaries of a structure, a new scheme of representation is proposed. Two independent level set functions are
used for the representation. The two types of boundaries are represented separately and are allowed to be continu-
ously propagated during the optimization. The optimization problem of minimum compliance is considered.
2. Keywords: topology optimization, level set method, support, pressure load.

3. Introduction
A structure has several types of boundaries, for instance the Dirichlet boundary, the Neumann boundary, and the
free boundary. Optimization of any one of them will be helpful to improve the performance of a structure, and there
are engineering applications that require to simultaneously optimize two or more boundaries of a structure. For
instance, in the optimization of structure with pressure load, both the free boundary and the Neumann boundary
are required to be simultaneously optimized [1–11]. Also, it would be better if both the free boundary and the
Dirichlet boundary (support) are simultaneously optimized [12–18].

In conventional level set method of structural shape and topology optimization [10, 19–22], usually only the
traction free boundary of a structure is represented through a single level set function and is optimized, but the
Dirichlet boundary and the Neumann boundary are specified before and fixed during the optimization. If mul-
tiple types of structure boundaries are to be simultaneously optimized, it seems that a natural extension of the
conventional level set method is to use the zero level set of a single level set function to represent the multiple
types of boundaries, and then impose different labels on the points of these boundaries, and track these points
during the optimization. However, it is well known that such a tracking method is not able to deal with topological
changes [10, 19–22]. Therefore, the conventional representation of a structure through a single level set function
is not adequate for the simultaneous optimization of multiple types of boundaries.

Such a situation leads to a fundamental issue of the present study, i.e., how to represent multiple types of
boundaries of a structure. In order to address this issue, a new scheme of representation through two level set
functions is proposed, and it is applied in two structural shape and topology optimization problems.

4. Representation of structure and multiple types of boundaries
The scheme of representation is shown in Fig. 1. Two independent level set functions, denoted by Φ and Ψ, are
used to represent a structure. The inside and outside regions with respect to the structure boundary are given by

Ω = {x |Φ(x)< 0 and Ψ(x)< 0, x ∈ D} (1)
D\Ω = {x |Φ(x)> 0 or Ψ(x)> 0, x ∈ D} (2)

where D is the reference domain. In other words, a structure is represented by the set of points where both of the
two level set functions are negative. The level set function Φ or Ψ is constructed to be a signed distance function
to a closed curve in 2D or a closed surface in 3D, and a rectilinear grid is used in the numerical implementation.
With such a representation, the structure defined in Eq. (1) can be obtained through a boolean operation of the two
level set functions

Ω = {x |max{Φ(x),Ψ(x)}< 0, x ∈ D} (3)
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In addition, many geometric properties including the unit outward normal n and the curvature κ can be readily
expressed [23].

The free boundary to be optimized is represented by a portion of the zero-level set of Φ, i.e.,

ΓΦ
H = {x |Φ(x) = 0,Ψ(x)< 0, x ∈ D} (4)

In the shape and topology optimization of both structure and support, the Dirichlet boundary to be optimized is
represented by a portion of the zero-level set of Ψ, i.e.,

ΓD = {x |Ψ(x) = 0, Φ(x)< 0, x ∈ D} (5)

Similarly, in the shape and topology optimization of structures subjected to pressure load, the Neumann boundary
ΓN to be optimized is represented by a portion of the zero-level set of Ψ, i.e.,

ΓN = {x |Ψ(x) = 0, Φ(x)< 0, x ∈ D} (6)
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Figure 1: The scheme for the representation of shape and boundary.

During the optimization, the two types of boundaries are independently and continuously propagated. Propa-
gation of the two boundaries is modeled separately by two independent Hamilton–Jacobi equations [10, 19–22]

Φt +FΦ ·∇Φ = bΦκ|∇Φ| (7)

Ψt +FΨ ·∇Ψ = bΨκ|∇Ψ| (8)

where the velocity termsFΦ, bΦ, FΨ, bΨ are given by the shape derivatives of the optimization problem.
The concept of using multiple level set functions in the structural shape and topology optimization had been

introduced in the design of structures that have several different materials [24, 25]. The idea is to use n level
set functions to represent up to 2n different materials. In the present study, two level set functions are not used
to represent multiple regions of different materials, but they are used to represent two different types of boundaries.

5. Shape and topology optimization of both structure and support
The effects of the support on a structure’s performance have been considered in optimization for a long time. In
the early pioneering research work [26–30], the optimal position and stiffness of supports of discrete structures
were considered. Recently, the optimization of support was extended for continuum structures. In these studies,
the methods of optimization are divided into two categories. The first category is based on a field of background
springs that represent potential supports [12–14]. A continuous design variable is given to each spring. When
the value of a spring variable reaches the lower bound, the point where the spring is attached to the structure is
considered as free. On the other hand, when the value of a spring variable reaches the upper bound, the attachment
point is considered as fixed. Intermediate values of spring variables are penalized. The second category is based
on continuous variation of support point or support boundary [15–18], which is similar to the shape optimization.

The optimization problem considered in the present study is the regularized minimum compliance problem

inf
Ω∈Uad

J(Ω)+ ℓP(Ω) (9)
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where J is the compliance; ℓ > 0 is a fixed weighting parameter; P(Ω) is the perimeter of a structure. The set of
admissible shapes is defined as Uad = {Ω ⊂ D , V (Ω)≤V , C(ΓD)≤C} where V (Ω)≤V is a volume constraint;
C(ΓD)≤C is a cost constraint of support given as

C(ΓD) =
∫

ΓD

c(x)ds ≤C (10)

where ΓD is the Dirichlet boundary; c(x) is a fixed scalar field that describes the cost of support at point x. The
function c(x) means that the cost of support depends on the position.

In the optimization, both the free boundary ΓH and the Dirichlet boundary ΓD are optimized. The results of
shape derivative analysis are given by

L ′(Ω)(θ) =
∫

ΓH

GΓH θ ·nds+
∫

ΓD

GΓD θ ·nds (11)

where L is the Lagrangian; GΓH and GΓD are given by

GΓH =−Ae(u) · e(u)+ ℓκ + ℓ1 (12)

GΓD = Ae(u) · e(u)+ ℓκ + ℓ1 + ℓ2

(
∂c
∂n

+κc
)

(13)

where f is the body force; u is the displacement; A is the elasticity tensor; e(u) is the strain tensor; ℓ1 and ℓ2
are respectively the Lagrange multipliers for the volume constraint and the cost constraint of support; κ is the
curvature of boundary.

The shape derivatives lead to the the velocity terms in Eq. (7) and (8) as

FΦ = (Ae(u) · e(u)− ℓ1)n, bΦ = ℓ (14)

FΨ =

(
−Ae(u) · e(u)− ℓ1 − ℓ2

∂c
∂n

)
n, bΨ = ℓ+ ℓ2c (15)

More details about the optimization problem and the shape derivative analysis are referred to [31].

6. Shape and topology optimization of structures subjected to pressure load
The problem of shape and topology optimization of structures subjected to pressure load is in most cases solved
by using the SIMP method [32, 33]. Nevertheless, difficulties exist in the SIMP based solution, since one needs
to find the pressure boundary from a smooth scalar field that represents the distribution of material in a reference
domain. If the scalar field varies smoothly from 0 to 1 (unfortunately, this is true particularly in the early stage of
optimization), the boundary of a structure and the pressure load is ambiguously defined. Several methods were pro-
posed and integrated in the SIMP method to find the pressure boundary [1–5]. On the other hand, several creative
approaches were proposed to mimic the effects of a pressure load by artificially incorporating another physical
field into the optimization problem [6–9], hence circumventing the issue of pressure boundary. Nevertheless, the
downside of these approaches is that some new numerical issues may arise [7, 8] and the optimization is more
complex. The level set method was also used to solve the optimization with pressure load, for example the study
by Allaire et al. [10] and by Guo et al. [11]. In these studies, the pressure boundary together with the free boundary
are represented by the zero level set of a single level set function, then the pressure boundary is picked out from
the zero level set by checking whether the normal vector is along a specified direction [10, 11]. Nevertheless, when
the pressure load comes from several different directions, it will be much more complicated for these approaches
to deal with the pressure boundary.

The optimization problem is also the regularized minimum compliance problem as given by Eq. (9), except
that here is no constraint on the cost of Dirichlet boundary in the set of admissible shapes Uad, i.e., Uad = {Ω ⊂
D , V (Ω)≤V}.

In the optimization, both the free boundary ΓH and the Neumann boundary ΓN are optimized. The results of
shape derivative analysis are give by

L ′ =
∫

ΓH

GΓH θ ·nds+
∫

ΓN

GΓN θ ·nds (16)

where L is the Lagrangian; GΓH and GΓN are given by

GΓH =−Ae(u) · e(u)+ ℓκ + ℓ1 (17)
GΓN =−2div(p0u)−Ae(u) · e(u)+ ℓ+ ℓ1 (18)
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where p0 is the constant magnitude of a pressure load, and in the present study, the magnitude of pressure load is
assumed to be a constant, i.e., p =−p0n; ℓ1 is the Lagrange multiplier for the volume constraint.

The shape derivatives lead to tentative velocity terms in Eq. (7) and (8) as

FΦ =
(
Ae(u) · e(u)− ℓ1

)
n, bΨ = ℓ (19)

FΨ =
(
2div(p0u)+Ae(u) · e(u)− ℓ1

)
n, bΦ = ℓ (20)

For most of the engineering applications considered in the literature, the pressure boundary ΓN should not touch
or cross the traction free boundary ΓH . However, according to our experience of the present study, if the velocity
terms are chosen according to Eqs. (19–20), the two boundaries may indeed touch or cross each other when the
initial design is not so good or the size of descent steps of optimization is big. In order to address this issue, we
modify the velocity vector FΨ on boundary ΓN and modify FΦ on boundary ΓH , then we extend the modified
velocities from the two boundaries to the entire reference domain by using a PDE based method [34]. More details
about the shape derivative analysis and modification of velocity terms are referred to [35].

7. Numerical examples
7.1 Example 1: optimization of structure and support
The design problem is shown in Fig. 2(a). The shaded rectangular region at the middle is the admissible domain
for the design of support. We do the finite element analysis by modifying a fixed background triangle mesh and do
not use the artificial weak material, as proposed in our previous study [36]. The upper bound of volume is 0.35 m3,
and the upper bound of the cost of support is 0.3. The initial design is shown in Fig. 2(b).

The optimal structure is shown in Fig. 2(c). The objective function of the optimal structure is 10.93; compliance
is 10.74; the volume is 0.35; the cost of support of the optimal design is 0.29. It can be seen that the optimal support
does not coincide with the two dash lines. In addition, it is interesting to see that in the design shown in Fig. 2(c)
the three loads are connected and that the two loads at the bottom are effectively used to counteract the upper load,
thus minimizing the compliance due to these loads. From this example, we see that for a structure that is subject
to multiple loads, load path can be tailored by the support such that the loads are self-equilibrated. In such cases,
the design of support is important.
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Figure 2: Design problem, initial design, and optimal structure.

7.2 Example 2: optimization of structure subject to pressure load
The optimal design problem of the third example is shown in Fig. 3(a). The pressure load is applied from the top
of the structure. The reference domain is a rectangle of size 3 m× 1 m. The upper bound of volume is 0.9 m3.
An Eulerian method employing a fixed mesh and ersatz material [10] is used for the finite element analysis. The
pressure load is converted to a volume force as proposed in [10]. Only the left half is analyzed in this example.
The initial design is shown in Fig. 3(b). The optimal structure is shown in Fig. 3(c).

8. Conclusions
A new scheme of representation is proposed to represent multiple types of boundaries of a structure. Two indepen-
dent level set functions are used for the representation. The two types of boundaries are represented separately and
are allowed to be continuously propagated during the optimization. The optimization problem of minimum com-
pliance is considered. The numerical examples demonstrated that the proposed method is effective. In the future,
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Figure 3: Design problem, initial design, and optimal design.

the proposed method will be applied to many optimization problems that involve with multiple type of boundaries.
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