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Abstract  

In the optimization design of aerodynamic shape of a flight vehicle or airfoil, the objective function 

evaluation is done via high-fidelity and expensive computational fluid dynamics (CFD) simulation. In spite of 

great development of computing technology, such as the more accurate and faster simulation code and parallel 

computing, the efficient optimization method is still an open research area. Modern heuristics are not suitable since 

these methods often require an unbearable number of function evaluations. 

Due to the importance of expensive optimization, much effort has been made for developing methods to 

produce a reasonably good solution within a given budget on computational cost or time. A widely used approach 

for dealing with expensive optimization utilizing high-fidelity analysis is to use cheap global surrogate 

(approximation) models to substitute expensive simulation. Kriging is have been widely applied to many 

expensive optimization problems, since it can approximate nonlinear and multi-modal functions, and produce 

unbiased prediction at untested points. Actually, Kriging has been. Efficient Global Optimization (EGO) is the 

most popular Kriging based expensive optimization method 
[1]

.  

The infill sample selection criterion is an important issue for Kriging based optimization, such as EGO. In the 

original EGO or several aerodynamic optimization problems, one test points for evaluation is determined at each 

iteration. To make good use of parallel computing resources, a multiobjective optimization based framework has 

been proposed to balance the exploration and exploitation for expensive optimization problem, called EGO-MO 
[11]

. It treats balancing the local exploitation and global exploration as a multiobjective optimization problem 

(MOP). Then, a multiobjective optimization algorithm can be used for obtaining the Pareto set, i.e., a set of best 

trade-off solutions for balancing exploitation and exploration. Several points can be selected from the Pareto set 

for evaluation in a parallel manner. In such a way, parallel computing techniques can be used for reducing the 

clock time for optimization. Additionally, the Multiobjective Evolutionary Algorithm based on Decomposition 

(MOEA/D) 
[3]

 is employed to solve the aforementioned MOP. Due to the population nature of MOEA/D, it is able 

to escape from local optimal solutions and give a set of high quality trade-off candidates for local exploitation and 

global exploration.  

In the airfoil shape optimization problem, the objective is to minimize drag maintaining the reference lift for 

the transonic airfoil rae2822. The class/shape transformation (CST) 
[4]

 function is employed for the 

parameterization of the airfoil. The open source code SU
2 [5]

 is adopted to perform the high-fidelity aerodynamic 

analysis of initial and infill sampling points. The EGO-MO and standard EGO is applied to solve the 

aforementioned airfoil optimization problem. The optimum results are analyzed for the mechanism of the drag 

reduction. The two methods are compared for the function evaluation number and the iteration number. The 

investigation shows that the EGO-MO feature less iteration numbers than standard EGO and can give better 

optimal results.  
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