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Abstract

A combination of ray and Fourier methods is used to describe
the linear internal wavefield generated by a horizontally mov-
ing, vertically oscillating, source in a stratified fluid. Ray the-
ory is used to approximate the wavefield in a Fourier transform
domain. The ray solutions are then superimposed by inverse
Fourier transform to produce the spatial solution. This is a more
practical approach than calculating the ray solution directly in
the spatial domain, and it is general enough to treat background
flows with depth dependent shear and stratification. The the-
ory is compared with tank experiments for a towed sphere in a
uniformly stratified background.

Introduction

Obstacles that move through a stratified fluid generate internal
waves, either directly by the displacement of the fluid around
the obstacle or indirectly by motions in the obstacle’s wake. The
wake motions consist of turbulent eddies and the collapse of
partially mixed regions toward an equilibrium density level.

To gain insight into these generation processes, we study
the case of a source travelling horizontally at constant speed
through a vertically stratified fluid. We consider moderate
Froude numberFr = U/(Na), where U is the speed of the
source,a is its radius, and N is the buoyancy frequency of the
fluid.

The theory, described in more detail in [2], is a modification of
the methods developed for topographically generated internal
waves by [1] and [2]. Ray solutions are computed in a Fourier
transform domain and are then superimposed by inverse Fourier
transform to produce a spatial solution. This is a more practi-
cal approach than calculating the ray solution directly in the
spatial domain, mainly because the Fourier superposition auto-
matically accounts for diffraction effects near caustics and other
regions where the spatial ray theory fails.

We present the theory in a form that allows the source to oscil-
late vertically as well as move horizontally. The vertical oscil-
lations will be used to model the unsteady wave generation by
turbulence in the wake of the sphere, as suggested by [3]. The
theory is developed for a depth-dependent background, but in
this study the results presented are limited to a uniform back-
ground. This is to compare with our available data from labo-
ratory experiments, which were conducted by towing a sphere
through a background at rest with uniform stratification. Wave
reflections from the upper and lower boundaries of the tank are
important, so the reflected waves are included in the theory.

Figure 1: A sphere of diameterD is towed horizontally at speed
U through a linear density gradient in water of depthH. Wave
motions propagate away from the sphere and through a carpet of
neutrally-buoyant polystyrene beads with densityρ0. In the ex-
periments reported here, the beads are 2 sphere diameters above
the midplane of the sphere. Model vibrations are reduced by op-
erating at high tensionT in the oblique support wires.

Theory

We consider a stratified Boussinesq fluid. Internal waves are
generated by a source that moves horizontally at constant speed
while oscillating vertically at constant frequencyσ. The coordi-
nate system,r = (x,y,z) with z positive upwards, is fixed to the
mean position of the oscillating source. The background flow in
this reference frame isU = (U(z),V(z),0), and the background
buoyancy frequency isN(z).

The internal waves have wavenumberk = (k, l ,m) and intrinsic
frequency

ω̂ = σ−kU− lV. (1)

The internal-wave dispersion relation is

m=±(k2 + l2)1/2(N2/ω̂2−1)1/2. (2)

We derive a solution for the vertical displacementη̃(k, l ,z) of
the wavefield at a fixed horizontal wavenumber. The spatial
solution is then obtained by inverse Fourier transform:

η(r , t) = e−iσt
∞∫∫

−∞

η̃(k, l ,z) ei(kx+ly)dkdl . (3)

The factore−iσt accounts for all of the time dependence in the
present model. This can be considered as the long-time limit



Figure 2: Experimental results foru in the case ofFr = 2. Each
image is a horizontal cross section of one side of the wake. The
12 images are for equally spaced times over the duration of time
Nt = 29.8. Time increases from left to right and from top to
bottom. The total distance traversed by the sphere in this time
is 29.8D. The minimum and maximum values foruare -0.2cm/s
to 0.14cm/s.

of an initial value problem in which the motion is started from
rest, and the associated transients have decayed or propagated
away.

We use a ray approximation forη̃(k, l ,z), of the form

η̃(k, l ,z) = b(k, l ,z) ei
∫ z

0 m(k,l ,z′)dz′ . (4)

The amplitude|b| can be derived from the conservation of wave-
actionA, which here reduces to the constancy of the vertical flux
of wave-actioncg3A, wherecg3 = ∂ω̂/∂m is the vertical group
velocity.

The details of the derivation are given in [2]. Here we quote the
result:

b = πi(Q/ω̂)0 [G0/G]1/2. (5)

The zero subscript indicates evaluation atz= 0, the mean depth
of the source. We also have

G = N2cg3/ω̂, (6)

For the source functionQ, we use the following form, from [3],

Q(k, t) =
3
4

iπ−2a3
[
U0k+hσe−iσtm

] j1(Ka)
Ka

, (7)

whereK = |k| and j1(z) = (sinz)/z2− (cosz)/z is the spherical
Bessel function of order unity. The background flow at the mean
position of the source isU0, which is aligned in thex-direction.
In the limit of large Froude numberFr = U0/Na the source
function (7) represents the effects of a horizontally translating,
vertically oscillating, solid sphere of radiusa. The amplitude of
the vertical oscillation of the sphere ish, and its vertical velocity
is hσe−iσt .

Modifications of the above results to incorporate buoyancy fre-
quency turning points (wherêω = N) are given in [1] and [2].

To compute the spatial solution for another variable, such as
thex-component of the perturbation velocityu, we need only to
relate the vertical displacementη̃ to ũ by standard ray relations
(e.g. [5]) before taking the inverse Fourier transform (3).

Reflected Waves

So far we have only considered waves that move upward from
the source. To compare with our experimental results, we must
allow wave reflections from the upper and lower boundaries of
the tank. From here on, we will restrict attention to a uniform
background, which is the condition of the experiments.

To account for wave reflections, we follow the method of [1],
where more details can be found. Consider a fixed heightz
above the source and a tank of heightH. Each time a ray returns
to thatz after reflecting once from the top of the tank and once
from the bottom of the tank, the wave phasemzis advanced by
m2H. To include the effects of this and subsequent reflections,
we must multiplyη̂(k, l ,z) in (4) by the sum

S =
∞

∑
n=0

ein2mH (8)

= ieimH/2sinmH. (9)

The sum is defined in the sense of generalized functions (see
Eq. (1.2.2) of [6]). It diverges formH= π, the condition for per-
fect constructive interference between all of the reflected waves.
The divergence can be eliminated by adding a small damping
factor in the form of an imaginary wavenumbermi , as in [1], or
by limiting S to a finite number of terms. The number of terms
can be chosen to represent a finite number of reflections at the
time of interest, as determined by group velocity calculations.
We have so far only experimented with the first method. In the
results presented below, we have used a value ofmiH = 0.02.

The wavefield, including all reflected waves, is modelled by
four terms, each with a factor ofS. Two terms represent up-
ward and downward moving rays that initially leave the source
moving upward. The other two terms represent upward and
downward moving rays that initially leave the source moving
downward. The term̂η(k, l ,z)S, whereη̂(k, l ,z) is given by (4),
corresponds to the first of those four terms.

Experiments

Experiments were conducted in a 2.4× 2.4 m tank filled to a
height H = 26cm with a linearly stratified salt solution. The
density gradient was created by the standard two-tank method,
and density values were checked at an array of taps in the side-
wall. In the experiments reported here, the buoyancy frequency
N = 1.88±2%. The sphere was towed at a height of 11.3cm
above the bottom tank. The sphere diameter isD = 2.52cm
and Fr = N/Ua (wherea = D/2) was varied by varying the
tow speedU . For Fr = 1, the tow speed wasU = 2.37cm/s.
The Reynolds numberRevaries by the same amount (i.e. for
Fr = 1,2,4, we haveRe= 600,1200,2400), but we assume the
variations inReto be of minor importance for the wavefield. A
horizontal (isopycnal) bead sheet is left at a height∆z = 2D
above the mid-plane of the sphere, and particle motions are
tracked using a custom DPIV technique, detailed in [4] and [7].
The experimental setup is sketched in figure 1.

To improve the spatial and temporal resolution, the image win-
dow was centered on one side of the wake only (assuming bi-
lateral symmetry), and exposures were made over fast and slow
timescales using a nested pair of short and long exposure times
at each timestep. The components of the horizontal veloc-
ity field u,v were calculated directly from the particle image
displacements and interpolated onto a regular grid by a two-
dimensional smoothing spline.

Results

We will consider the cases ofFr = 1,2,4. The sphere is towed
in thex direction, and each plot that we present is a horizontal



Figure 3: A comparison forFr = 1 of tank experiments (upper
panel) and theory (lower panel). The plotted variable isu, the
x-component of the velocity of the wavefield, in cm/s.

cross section at a heightz = 2D above the centerplane of the
sphere. All plots are of thex componentu of the wavefield ve-
locity. In all plots except the final figure 6, we have considered
a non-oscillating source, i.e.σ = 0 in (7).

For the theoretical calculation, the inverse Fourier transform (3)
was approximated discretely on a Fourier grid of 1024 x 1024
in k, l . The corresponding grid spacing in the spatial domain is
about 0.8cm. A smaller number of Fourier grid points would
have sufficed in some cases. In addition to resolving the flow
features, the extent of the Fourier grid must be chosen to limit
periodic wrap-around errors, which result from the discrete ap-
proximation of the inverse Fourier transform.

A sequence of images ofu from the tank experiment is shown in
figure 2 for the case ofFr = 2. Here and in subsequent figures,
the image grid size is 74 x 54, with spacing 1.072 cm x 1.056
cm. This gives a 78.3 x 56 cm window (inside a 2.44 x 2.44 m
tank). In units ofD the window is 31D x 22.2D. The window is
fixed in space and the sphere moves through it in time.

As noted above, the images from the experiments were taken
on one side of the wake only, assuming a symmetric wake. In
the following figures, we have flipped the experimental images
symmetrically to give the more familiar picture of the full wave-
field. The data points directly behind the obstacle, along the
line y = 0, are at the edge of the field of measurement, and this

Figure 4: A comparison forFr = 2 of the experimental result
(upper panel) and the theory (lower panel). The plots are ofu.

shows up as an anomaly in the following figures.

Figure 3 is for the case ofFr = 1. The tank measurement is
shown in the top panel, and our linearized theory is shown in the
lower panel. At this relatively low Froude number the turbulent
eddies in the wake are not strong and are thus not important for
the generation of internal waves. (We ignore wake generation
until figure 6). However, the source function we have used, (7),
is most accurate for the representation of a solid sphere only in
the limit of high Froude number. Thus some of the discrepancy
between the theory and measurements in this example may be
due to the source representation. In the future, we plan to try
other source representations that depend on the Froude number.

Figure 4 shows the case ofFr = 2, again with the experimen-
tal results in the upper panel and the theory in the lower panel.
The peak theoretical amplitude of the wavefield is lower than
the peak amplitude of the experiments, by a factor of about two.
This difference in wave amplitudes is maintained in the region
closest to the obstacle, so the difference must be due to fac-
tors other than turbulent eddy generation in the wake. We have
omitted from the theory all eigenfunctions that correspond to
evanescent modes. These could be included in the theory, by
the usual WKB methods, and might account for some of the
difference in the amplitude predictions. Another possibility is
the presence of vortical modes, which may be important in the
experimental results but are not included in the theory. We plan
to check this by comparing the horizontal divergenceux +vy of
the experimental data and the theory, which would reveal the



Figure 5: A comparison forFr = 4 of the experimental result
(upper panel) and the theory (lower panel). The plots are ofu.

non-vortical modes only.

Figure 5 shows the results forFr = 4. Here our linear theory is
a poor representation of the experimental results, though it does
give a reasonable prediction for the lateral extent of the wave-
field. This is the parameter regime in which eddy-generated
internal waves from the wake are important. A better agree-
ment between theory and experiment is obtained by including
an oscillating source to model the eddy generation. Previously
we had ignored the oscillating term in the source function (7).
Here we include the oscillating term, with oscillation amplitude
h = 0.4a and frequencyσ = 2.5N, following guidelines in [3].
The result is shown in figure 6, which is a better fit to the data,
though the theory predicts a wavefield that is more concentrated
around thex-axis.

Conclusions

This work is a step toward seeing how far ray theory can go
in simulating the internal wavefield generated by an obstacle
and its wake. By combining ray and Fourier methods, we have
obtained a detailed three-dimensional picture of the wavefield,
with far higher resolution than possible in numerical models.
The calculation is also fast, taking only a few seconds for each
depth on a standard PC. Future needs are a better representation
of the source, dependent on the Froude number, and a more
detailed study of the effectiveness of modelling wake generated
internal waves by an oscillating source.

Figure 6: As in Figure 5, lower panel, but with an additional
oscillating source term for wave generation by wake eddies.
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